LLM Benchmark for Throughputs via Ollama
Project description
llm-benchmark (ollama-benchmark)
LLM Benchmark for Throughput via Ollama (Local LLMs)
Installation Steps
pip install llm-benchmark
Usage for general users directly
llm_benchmark run
Installation and Usage in Video format
It's tested on Python 3.9 and above.
ollama installation with the following models installed
7B model can be run on machines with 8GB of RAM
13B model can be run on machines with 16GB of RAM
Usage explaination
On Windows, Linux, and macOS, it will detect memory RAM size to first download required LLM models.
When memory RAM size is greater than or equal to 4GB, but less than 7GB, it will check if gemma:2b exist. The program implicitly pull the model.
ollama pull qwen:1.8b
ollama pull gemma:2b
ollama pull phi:2.7b
ollama pull phi3:3.8b
When memory RAM size is greater than 7GB, but less than 15GB, it will check if these models exist. The program implicitly pull these models
ollama pull phi3:3.8b
ollama pull qwen2:7b
ollama pull gemma2:9b
ollama pull mistral:7b
ollama pull llama3.1:8b
ollama pull llava:7b
When memory RAM siz is greater than 15GB, it will check if these models exist. The program implicitly pull these models
ollama pull phi3:3.8b
ollama pull qwen2:7b
ollama pull gemma2:9b
ollama pull mistral:7b
ollama pull llama3.1:8b
ollama pull llava:7b
ollama pull llava:13b
Python Poetry manually(advanced) installation
https://python-poetry.org/docs/#installing-manually
For developers to develop new features on Windows Powershell or on Ubuntu Linux or macOS
python3 -m venv .venv
. ./.venv/bin/activate
pip install -U pip setuptools
pip install poetry
Usage in Python virtual environment
poetry shell
poetry install
llm_benchmark hello jason
Example #1 send systeminfo and benchmark results to a remote server
llm_benchmark run
Example #2 Do not send systeminfo and benchmark results to a remote server
llm_benchmark run --no-sendinfo
Example #3 Benchmark run on explicitly given the path to the ollama executable (When you built your own developer version of ollama)
llm_benchmark run --ollamabin=~/code/ollama/ollama
Reference
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for llm_benchmark-0.3.22-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f92e12c24e3f3bae47f23d3d6dbf905549753c7b5f3fbf39d98ebcff664088ed |
|
MD5 | 83ae95f865f9a55f331ab638a0d4c798 |
|
BLAKE2b-256 | a90a320aa5392488ad53fb74fccc8ad1369a9a09ca573610156a7416a5c90614 |