LLM plugin to access Google's Gemini family of models
Project description
llm-gemini
API access to Google's Gemini models
Installation
Install this plugin in the same environment as LLM.
llm install llm-gemini
Usage
Configure the model by setting a key called "gemini" to your API key:
llm keys set gemini
<paste key here>
You can also set the API key by assigning it to the environment variable LLM_GEMINI_KEY.
Now run the model using -m gemini-2.0-flash, for example:
llm -m gemini-2.0-flash "A short joke about a pelican and a walrus"
A pelican and a walrus are sitting at a bar. The pelican orders a fishbowl cocktail, and the walrus orders a plate of clams. The bartender asks, "So, what brings you two together?"
The walrus sighs and says, "It's a long story. Let's just say we met through a mutual friend... of the fin."
You can set the default model to avoid the extra -m option:
llm models default gemini-2.0-flash
llm "A joke about a pelican and a walrus"
Available models
gemini/gemini-3-flash-previewgemini/gemini-3-pro-preview: Gemini 3 Pro Previewgemini/gemini-2.5-flash-lite-preview-09-2025gemini/gemini-2.5-flash-preview-09-2025gemini/gemini-flash-lite-latest: Latest Gemini Flash Litegemini/gemini-flash-latest: Latest Gemini Flashgemini/gemini-2.5-flash-lite: Gemini 2.5 Flash Litegemini/gemini-2.5-pro: Gemini 2.5 Progemini/gemini-2.5-flash: Gemini 2.5 Flashgemini/gemini-2.5-pro-preview-06-05gemini/gemini-2.5-flash-preview-05-20: Gemini 2.5 Flash preview (priced differently from 2.5 Flash)gemini/gemini-2.5-pro-preview-05-06gemini/gemini-2.5-flash-preview-04-17gemini/gemini-2.5-pro-preview-03-25gemini/gemini-2.5-pro-exp-03-25gemini/gemini-2.0-flash-litegemini/gemini-2.0-pro-exp-02-05gemini/gemini-2.0-flashgemini/gemini-2.0-flash-thinking-exp-01-21: Experimental "thinking" model from January 2025gemini/gemini-2.0-flash-thinking-exp-1219gemini/gemma-3n-e4b-itgemini/gemma-3-27b-itgemini/gemma-3-12b-itgemini/gemma-3-4b-itgemini/gemma-3-1b-itgemini/learnlm-1.5-pro-experimentalgemini/gemini-2.0-flash-expgemini/gemini-exp-1206gemini/gemini-exp-1121gemini/gemini-exp-1114gemini/gemini-1.5-flash-8b-001gemini/gemini-1.5-flash-8b-latest: The least expensive modelgemini/gemini-1.5-flash-002gemini/gemini-1.5-pro-002gemini/gemini-1.5-flash-001gemini/gemini-1.5-pro-001gemini/gemini-1.5-flash-latestgemini/gemini-1.5-pro-latestgemini/gemini-pro
All of these models have aliases that omit the gemini/ prefix, for example:
llm -m gemini-1.5-flash-8b-latest --schema 'name,age int,bio' 'invent a dog'
Images, audio and video
Gemini models are multi-modal. You can provide images, audio or video files as input like this:
llm -m gemini-2.0-flash 'extract text' -a image.jpg
Or with a URL:
llm -m gemini-2.0-flash-lite 'describe image' \
-a https://static.simonwillison.net/static/2024/pelicans.jpg
Audio works too:
llm -m gemini-2.0-flash 'transcribe audio' -a audio.mp3
And video:
llm -m gemini-2.0-flash 'describe what happens' -a video.mp4
The Gemini prompting guide includes extensive advice on multi-modal prompting.
YouTube videos
You can provide YouTube video URLs as attachments as well:
llm -m gemini-3-pro-preview -a 'https://www.youtube.com/watch?v=9o1_DL9uNlM' \
'Produce a summary with relevant URLs and code example snippets, then an accurate transcript with timestamps.'
These will be processed with media resolution low by default. You can use the -o media_resolution X option to set that to medium, high, or unspecified.
JSON output
Use -o json_object 1 to force the output to be JSON:
llm -m gemini-2.0-flash -o json_object 1 \
'3 largest cities in California, list of {"name": "..."}'
Outputs:
{"cities": [{"name": "Los Angeles"}, {"name": "San Diego"}, {"name": "San Jose"}]}
Code execution
Gemini models can write and execute code - they can decide to write Python code, execute it in a secure sandbox and use the result as part of their response.
To enable this feature, use -o code_execution 1:
llm -m gemini-2.0-flash -o code_execution 1 \
'use python to calculate (factorial of 13) * 3'
Google search
Some Gemini models support Grounding with Google Search, where the model can run a Google search and use the results as part of answering a prompt.
Using this feature may incur additional requirements in terms of how you use the results. Consult Google's documentation for more details.
To run a prompt with Google search enabled, use -o google_search 1:
llm -m gemini-2.0-flash -o google_search 1 \
'What happened in Ireland today?'
Use llm logs -c --json after running a prompt to see the full JSON response, which includes additional information about grounded results.
URL context
Gemini models support a URL context tool which, when enabled, allows the models to fetch additional content from URLs as part of their execution.
You can enable that with the -o url_context 1 option - for example:
llm -m gemini-2.5-flash -o url_context 1 'Latest headline on simonwillison.net'
Extra tokens introduced by this tool will be charged as input tokens. Use --usage to see details of those:
llm -m gemini-2.5-flash -o url_context 1 --usage \
'Latest headline on simonwillison.net'
Outputs:
The latest headline on simonwillison.net as of August 17, 2025, is "TIL: Running a gpt-oss eval suite against LM Studio on a Mac.".
Token usage: 9,613 input, 87 output, {"candidatesTokenCount": 57, "promptTokensDetails": [{"modality": "TEXT", "tokenCount": 10}], "toolUsePromptTokenCount": 9603, "toolUsePromptTokensDetails": [{"modality": "TEXT", "tokenCount": 9603}], "thoughtsTokenCount": 30}
The "toolUsePromptTokenCount" key shows how many tokens were used for that URL context.
Chat
To chat interactively with the model, run llm chat:
llm chat -m gemini-2.0-flash
Timeouts
By default there is no timeout against the Gemini API. You can use the timeout option to protect against API requests that hang indefinitely.
With the CLI tool that looks like this, to set a 1.5 second timeout:
llm -m gemini-2.5-flash-preview-05-20 'epic saga about mice' -o timeout 1.5
In the Python library timeouts are used like this:
import httpx, llm
model = llm.get_model("gemini/gemini-2.5-flash-preview-05-20")
try:
response = model.prompt(
"epic saga about mice", timeout=1.5
)
print(response.text())
except httpx.TimeoutException:
print("Timeout exceeded")
An httpx.TimeoutException subclass will be raised if the timeout is exceeded.
Embeddings
The plugin also adds support for the gemini-embedding-exp-03-07 and text-embedding-004 embedding models.
Run that against a single string like this:
llm embed -m text-embedding-004 -c 'hello world'
This returns a JSON array of 768 numbers.
The gemini-embedding-exp-03-07 model is larger, returning 3072 numbers. You can also use variants of it that are truncated down to smaller sizes:
gemini-embedding-exp-03-07- 3072 numbersgemini-embedding-exp-03-07-2048- 2048 numbersgemini-embedding-exp-03-07-1024- 1024 numbersgemini-embedding-exp-03-07-512- 512 numbersgemini-embedding-exp-03-07-256- 256 numbersgemini-embedding-exp-03-07-128- 128 numbers
This command will embed every README.md file in child directories of the current directory and store the results in a SQLite database called embed.db in a collection called readmes:
llm embed-multi readmes -d embed.db -m gemini-embedding-exp-03-07-128 \
--files . '*/README.md'
You can then run similarity searches against that collection like this:
llm similar readmes -c 'upload csvs to stuff' -d embed.db
See the LLM embeddings documentation for further details.
Listing all Gemini API models
The llm gemini models command lists all of the models that are exposed by the Gemini API, some of which may not be available through this plugin.
llm gemini models
You can add a --key X option to use a different API key.
To filter models by their supported generation methods use --method one or more times:
llm gemini models --method embedContent
If you provide multiple methods you will see models that support any of them.
Development
To set up this plugin locally, first checkout the code. Then create a new virtual environment:
cd llm-gemini
python3 -m venv venv
source venv/bin/activate
Now install the dependencies and test dependencies:
llm install -e '.[test]'
To run the tests:
pytest
This project uses pytest-recording to record Gemini API responses for the tests.
If you add a new test that calls the API you can capture the API response like this:
PYTEST_GEMINI_API_KEY="$(llm keys get gemini)" pytest --record-mode once
You will need to have stored a valid Gemini API key using this command first:
llm keys set gemini
# Paste key here
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file llm_gemini-0.28.2.tar.gz.
File metadata
- Download URL: llm_gemini-0.28.2.tar.gz
- Upload date:
- Size: 23.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
045a6262b16c27469da5424423f8e0b20906b99ddba58504fa5c2c0fbb2b9f88
|
|
| MD5 |
6087f3278a9dabc266683e52402ee0fa
|
|
| BLAKE2b-256 |
492d3ffbe9c8447678b56f6b43272062f99abce0a38d2891cb2aa14bb03633a4
|
Provenance
The following attestation bundles were made for llm_gemini-0.28.2.tar.gz:
Publisher:
publish.yml on simonw/llm-gemini
-
Statement:
-
Statement type:
https://in-toto.io/Statement/v1 -
Predicate type:
https://docs.pypi.org/attestations/publish/v1 -
Subject name:
llm_gemini-0.28.2.tar.gz -
Subject digest:
045a6262b16c27469da5424423f8e0b20906b99ddba58504fa5c2c0fbb2b9f88 - Sigstore transparency entry: 777784129
- Sigstore integration time:
-
Permalink:
simonw/llm-gemini@668e599a158fbc2775452e49aaf7593f81af0cdd -
Branch / Tag:
refs/tags/0.28.2 - Owner: https://github.com/simonw
-
Access:
public
-
Token Issuer:
https://token.actions.githubusercontent.com -
Runner Environment:
github-hosted -
Publication workflow:
publish.yml@668e599a158fbc2775452e49aaf7593f81af0cdd -
Trigger Event:
release
-
Statement type:
File details
Details for the file llm_gemini-0.28.2-py3-none-any.whl.
File metadata
- Download URL: llm_gemini-0.28.2-py3-none-any.whl
- Upload date:
- Size: 17.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
3efef8b896b345b6107d0056ea24d6f9e59a57cc36ade868d567ab578fc1ede0
|
|
| MD5 |
016860df9468d4a22c7d9737a3aa0a3b
|
|
| BLAKE2b-256 |
030630ccc6514d3b628c0875a065505d4fa4b9abdd3f46500080ba42a2762af1
|
Provenance
The following attestation bundles were made for llm_gemini-0.28.2-py3-none-any.whl:
Publisher:
publish.yml on simonw/llm-gemini
-
Statement:
-
Statement type:
https://in-toto.io/Statement/v1 -
Predicate type:
https://docs.pypi.org/attestations/publish/v1 -
Subject name:
llm_gemini-0.28.2-py3-none-any.whl -
Subject digest:
3efef8b896b345b6107d0056ea24d6f9e59a57cc36ade868d567ab578fc1ede0 - Sigstore transparency entry: 777784130
- Sigstore integration time:
-
Permalink:
simonw/llm-gemini@668e599a158fbc2775452e49aaf7593f81af0cdd -
Branch / Tag:
refs/tags/0.28.2 - Owner: https://github.com/simonw
-
Access:
public
-
Token Issuer:
https://token.actions.githubusercontent.com -
Runner Environment:
github-hosted -
Publication workflow:
publish.yml@668e599a158fbc2775452e49aaf7593f81af0cdd -
Trigger Event:
release
-
Statement type: