Skip to main content

DIY image retrieval with spatial verification

Project description

Hands-on wide baseline tutorial

Summary description here.

We will create the wide baseline stereo mather and try it on various images with various features. There is also a a (naive) example of the spatial verification together with image retrieval. We will not build the components from scratch, instead will be using a ready packages, like kornia, pydegensac and OpenCV


pip install local_feature_tutorial

How to use

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from local_feature_tutorial.wbs import *
from local_feature_tutorial.visualization import *
from import *
from local_feature_tutorial.datasets import *
import cv2

hard_images_to_match = ''
fname = download_file(hard_images_to_match)

untar_to(fname, 'data/wbs')

wbs_img_fnames = get_all_images_in_subdirs('data/wbs')
print (wbs_img_fnames)

visualize_grid(wbs_img_fnames, (8,8))
['data/wbs/chimera_01.png', 'data/wbs/chimera_02.png', 'data/wbs/dh_01.png', 'data/wbs/dh_02.png', 'data/wbs/doll_theater1.jpeg', 'data/wbs/doll_theater2.jpeg', 'data/wbs/doll_theater3.jpeg', 'data/wbs/kn_church-2.jpg', 'data/wbs/kn_church-8.jpg', 'data/wbs/ministry_01.png', 'data/wbs/ministry_02.png', 'data/wbs/ministry_03.png', 'data/wbs/purkine-2.jpg', 'data/wbs/purkine-4.jpg']


sift_hardnet_matcher = TwoViewMatcher(detector=cv2.SIFT_create(8000), descriptor=HardNetDesc(),
                              matcher=SNNMMatcher(0.9), geom_verif=degensac_Verifier(0.5))

res = sift_hardnet_matcher.verify(wbs_img_fnames[7], wbs_img_fnames[8])
print (res.keys())
draw_matches(res['match_kpts1'], res['match_kpts2'],
                wbs_img_fnames[7], wbs_img_fnames[8], color=(0,255,0), R=10)
dict_keys(['match_kpts1', 'match_kpts2', 'F', 'num_inl'])


Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

local_feature_tutorial-0.0.3.tar.gz (19.8 kB view hashes)

Uploaded Source

Built Distribution

local_feature_tutorial-0.0.3-py3-none-any.whl (19.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page