Skip to main content

Simple python api to visualize the plots in a script.

Project description

[![Documentation Status](](
[![Build Status](](
[![PyPI version](](

## LocalVisualizer

Simple python api to visualize the plots in a script.

* Free software: MIT license
* Documentation:
* PyPI:

### Installation
``` bash
pip install local-visualizer

### Motivation
* When moving from an IPython notebook to a script, we lose the diagnostics
of visualizing pandas as tables and matplotlib plots.
* :class:`LocalViz` starts a local http server and creates a html file to
which pandas tables and matplotlib plots can be sent over.
* The html file is dynamically updated for long running scripts.

### Usage
``` python
import logging, sys, numpy as np, pandas as pd, matplotlib.pyplot as plt
import local_visualizer'fivethirtyeight')
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)

# Create the local visualizer instance
lviz = local_visualizer.LocalViz(html_file='lviz_test.html', port=9112)
# INFO:root:Starting background server at: http://localhost:9112/.
# INFO:local_visualizer:Click: http://carpediem:9112/lviz_test.html or http://localhost:9112/lviz_test.html

# Create plots which will be streamed to the html file.
lviz.h3('Matplotlib :o')
'Wrap your plots in the figure context manager which takes '
'in the kwargs of plt.figure and returns a plt.figure object.',

with lviz.figure(figsize=(10, 8)) as fig:
x = np.linspace(-10, 10, 1000)
plt.plot(x, np.sin(x))
plt.title('Sine test')

# Visualize pandas dataframes as tables.
lviz.h3('Pandas dataframes')

df = pd.DataFrame({'A': np.linspace(1, 10, 10)})
df = pd.concat(
[df, pd.DataFrame(np.random.randn(10, 4), columns=list('BCDE'))],

### Output
This starts a HTTPServer and creates a html file which is dynamically updated
each time ``lviz`` is called.

![Output image]( "The output of the above commands")

### Support and Requirements
Python 2.7

### API methods
1. `p`: paragraph
2. `br`: line break
3. `hr`: Horizontal rule with line breaks
4. `h1`, `h2`, ..., `h6`: Headers
5. `write`: Directly write text to the html document (or pass in a `pandas.DataFrame`)
6. `figure`: Context manager which accepts the kwargs of `plt.figure` and returns a `plt.figure` object
7. `start`: Applicable if `LocalViz` was initialized with `lazy=True`. Starts the server and creates the html file
8. `close`: Completes the html file
9. `del_html`: Deletes the html file

### Credits
This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.

.. _Cookiecutter:
.. _`audreyr/cookiecutter-pypackage`:


0.2.0 (2017-11-06)

The close method no more deletes the html but only makes the html valid.

0.1.0 (2017-11-05)

* First release on PyPI.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for local-visualizer, version 0.2.0
Filename, size File type Python version Upload date Hashes
Filename, size local_visualizer-0.2.0-py2.py3-none-any.whl (9.6 kB) File type Wheel Python version py2.py3 Upload date Hashes View
Filename, size local_visualizer-0.2.0.tar.gz (12.6 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page