Skip to main content

Simple python api to visualize the plots in a script.

Project description

[![Documentation Status](](
[![Build Status](](
[![PyPI version](](

## LocalVisualizer

Simple python api to visualize the plots in a script.

* Free software: MIT license
* Documentation:
* PyPI:

### Installation
``` bash
pip install local-visualizer

### Motivation
* When moving from an IPython notebook to a script, we lose the diagnostics
of visualizing pandas as tables and matplotlib plots.
* :class:`LocalViz` starts a local http server and creates a html file to
which pandas tables and matplotlib plots can be sent over.
* The html file is dynamically updated for long running scripts.

### Usage
``` python
import logging, sys, numpy as np, pandas as pd, matplotlib.pyplot as plt
import local_visualizer'fivethirtyeight')
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)

# Create the local visualizer instance
lviz = local_visualizer.LocalViz(html_file='lviz_test.html', port=9112)
# INFO:root:Starting background server at: http://localhost:9112/.
# INFO:local_visualizer:Click: http://carpediem:9112/lviz_test.html or http://localhost:9112/lviz_test.html

# Create plots which will be streamed to the html file.
lviz.h3('Matplotlib :o')
'Wrap your plots in the figure context manager which takes '
'in the kwargs of plt.figure and returns a plt.figure object.',

with lviz.figure(figsize=(10, 8)) as fig:
x = np.linspace(-10, 10, 1000)
plt.plot(x, np.sin(x))
plt.title('Sine test')

# Visualize pandas dataframes as tables.
lviz.h3('Pandas dataframes')

df = pd.DataFrame({'A': np.linspace(1, 10, 10)})
df = pd.concat(
[df, pd.DataFrame(np.random.randn(10, 4), columns=list('BCDE'))],

### Output
This starts a HTTPServer and creates a html file which is dynamically updated
each time ``lviz`` is called.

![Output image]( "The output of the above commands")

### Support and Requirements
Python 2.7

### API methods
1. `p`: paragraph
2. `br`: line break
3. `hr`: Horizontal rule with line breaks
4. `h1`, `h2`, ..., `h6`: Headers
5. `write`: Directly write text to the html document (or pass in a `pandas.DataFrame`)
6. `figure`: Context manager which accepts the kwargs of `plt.figure` and returns a `plt.figure` object
7. `start`: Applicable if `LocalViz` was initialized with `lazy=True`. Starts the server and creates the html file
8. `close`: Completes the html file
9. `del_html`: Deletes the html file

### Credits
This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.

.. _Cookiecutter:
.. _`audreyr/cookiecutter-pypackage`:


0.2.0 (2017-11-06)

The close method no more deletes the html but only makes the html valid.

0.1.0 (2017-11-05)

* First release on PyPI.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

local_visualizer-0.2.0.tar.gz (12.6 kB view hashes)

Uploaded source

Built Distribution

local_visualizer-0.2.0-py2.py3-none-any.whl (9.6 kB view hashes)

Uploaded py2 py3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page