Skip to main content

💟 Lovely numpy

Project description

💟 Lovely NumPy

Install

pip install lovely-numpy

How to use

How often do you find yourself debugging NumPy code? You dump your variable to the cell output, and see this:

numbers
array([[[-0.3541, -0.1975, -0.6715],
        [-0.3369, -0.1975, -0.9853],
        ...,
        [-0.4739, -0.3725, -0.689 ],
        [ 2.2489,  2.4111,  2.396 ]],

       [[-0.4054, -0.25  , -0.7238],
        [-0.4226, -0.2325, -1.0724],
        ...,
        [-0.8507, -0.6702, -1.0201],
        [ 2.1633,  2.3585,  2.3263]],

       ...,

       [[-0.8507, -0.3901, -1.1944],
        [-0.7822, -0.2325, -1.4559],
        ...,
        [-1.5014, -1.2304, -1.4733],
        [ 2.1804,  2.4111,  2.4308]],

       [[-0.8335, -0.4076, -1.2293],
        [-0.8164, -0.285 , -1.5256],
        ...,
        [-1.5528, -1.2829, -1.5256],
        [ 2.1119,  2.341 ,  2.3611]]], dtype=float32)

Was it really useful for you, as a human, to see all these numbers?

What is the shape? The size?
What are the statistics?
Are any of the values nan or inf?
Is it an image of a man holding a tench?

from lovely_numpy import Lo

Lo and behold!

Lo(numbers)
array[196, 196, 3] f32 n=115248 x∈[-2.118, 2.640] μ=-0.388 σ=1.073

Better, eh?

Lo(numbers[1,:6,1]) # Still shows values if there are not too many.
array[6] f32 x∈[-0.408, -0.232] μ=-0.340 σ=0.075 [-0.250, -0.232, -0.338, -0.408, -0.408, -0.408]
spicy = numbers[0,:12,0].copy()

spicy[0] *= 10000
spicy[1] /= 10000
spicy[2] = float('inf')
spicy[3] = float('-inf')
spicy[4] = float('nan')

spicy = spicy.reshape((2,6))
Lo(spicy) # Spicy stuff
array[2, 6] f32 n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.113e+03 +Inf! -Inf! NaN!
Lo(np.zeros((10, 10))) # A zero array - make it obvious
array[10, 10] all_zeros
Lo(spicy, verbose=True)
array[2, 6] f32 n=12 x∈[-3.541e+03, -3.369e-05] μ=-393.776 σ=1.113e+03 +Inf! -Inf! NaN!
array([[-3540.5432,    -0.    , ...,        nan,    -0.4054],
       [   -0.4226,    -0.4911, ...,    -0.5424,    -0.5082]],
      dtype=float32)

Going .deeper

Lo(numbers.transpose(2,1,0), depth=1)
array[3, 196, 196] f32 n=115248 x∈[-2.118, 2.640] μ=-0.388 σ=1.073
  array[196, 196] f32 n=38416 x∈[-2.118, 2.249] μ=-0.324 σ=1.036
  array[196, 196] f32 n=38416 x∈[-1.966, 2.429] μ=-0.274 σ=0.973
  array[196, 196] f32 n=38416 x∈[-1.804, 2.640] μ=-0.567 σ=1.178
# You can go deeper if you need to
Lo(numbers[:3,:3,:5], depth=2)
array[3, 3, 3] f32 n=27 x∈[-1.125, -0.197] μ=-0.544 σ=0.291
  array[3, 3] f32 n=9 x∈[-0.985, -0.197] μ=-0.481 σ=0.276 [[-0.354, -0.197, -0.672], [-0.337, -0.197, -0.985], [-0.405, -0.303, -0.881]]
    array[3] f32 x∈[-0.672, -0.197] μ=-0.408 σ=0.197 [-0.354, -0.197, -0.672]
    array[3] f32 x∈[-0.985, -0.197] μ=-0.507 σ=0.343 [-0.337, -0.197, -0.985]
    array[3] f32 x∈[-0.881, -0.303] μ=-0.530 σ=0.252 [-0.405, -0.303, -0.881]
  array[3, 3] f32 n=9 x∈[-1.072, -0.232] μ=-0.545 σ=0.289 [[-0.405, -0.250, -0.724], [-0.423, -0.232, -1.072], [-0.491, -0.338, -0.968]]
    array[3] f32 x∈[-0.724, -0.250] μ=-0.460 σ=0.197 [-0.405, -0.250, -0.724]
    array[3] f32 x∈[-1.072, -0.232] μ=-0.576 σ=0.360 [-0.423, -0.232, -1.072]
    array[3] f32 x∈[-0.968, -0.338] μ=-0.599 σ=0.268 [-0.491, -0.338, -0.968]
  array[3, 3] f32 n=9 x∈[-1.125, -0.285] μ=-0.605 σ=0.293 [[-0.474, -0.303, -0.828], [-0.474, -0.285, -1.125], [-0.542, -0.390, -1.020]]
    array[3] f32 x∈[-0.828, -0.303] μ=-0.535 σ=0.219 [-0.474, -0.303, -0.828]
    array[3] f32 x∈[-1.125, -0.285] μ=-0.628 σ=0.360 [-0.474, -0.285, -1.125]
    array[3] f32 x∈[-1.020, -0.390] μ=-0.651 σ=0.268 [-0.542, -0.390, -1.020]

Now in .rgb color

The important queston - is it our man?

Lo(numbers).rgb

Maaaaybe? Looks like someone normalized him.

in_stats = ( (0.485, 0.456, 0.406),     # mean 
             (0.229, 0.224, 0.225) )    # std

# numbers.rgb(in_stats, cl=True) # For channel-last input format
Lo(numbers).rgb(denorm=in_stats)

It’s indeed our hero, the Tenchman!

See the .chans

# .chans will map values betwen [0,1] to colors.
# Make our values fit into that range to avoid clipping.
mean = np.array(in_stats[0])
std = np.array(in_stats[1])
numbers_01 = (numbers*std + mean)
Lo(numbers_01)
array[196, 196, 3] n=115248 x∈[-4.053e-09, 1.000] μ=0.361 σ=0.248
Lo(numbers_01).chans

Grouping

# Make 8 images with progressively higher brightness and stack them 2x2x2.
eight_images = (np.stack([numbers]*8) + np.linspace(-2, 2, 8)[:,None,None,None])
eight_images = (eight_images
                     *np.array(in_stats[1])
                     +np.array(in_stats[0])
                ).clip(0,1).reshape(2,2,2,196,196,3)
            
Lo(eight_images)
array[2, 2, 2, 196, 196, 3] n=921984 x∈[0., 1.000] μ=0.382 σ=0.319
Lo(eight_images).rgb

Without Lo

from lovely_numpy import lovely, rgb, chans
lovely(numbers) # Returns `str`. `Lo(x)` returns a wrapper object with a `__repr__` and other methods.
'array[196, 196, 3] f32 n=115248 x∈[-2.118, 2.640] μ=-0.388 σ=1.073'
rgb(numbers, denorm=in_stats) # Returns a `PIL.Image.Image`, just like Lo(x).rgb

chans(numbers*0.3+0.5) # Also a `PIL.Image.Image`

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lovely-numpy-0.2.0.tar.gz (4.7 MB view hashes)

Uploaded Source

Built Distribution

lovely_numpy-0.2.0-py3-none-any.whl (17.2 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page