Skip to main content

❤️ Lovely Tensors

Project description

❤️ Lovely Tensors

Install

pip install lovely-tensors

How to use

How often do you find yourself debugging PyTorch code? You dump a tensor to the cell output, and see this:

numbers
tensor([[[-0.3541, -0.3369, -0.4054,  ..., -0.5596, -0.4739,  2.2489],
         [-0.4054, -0.4226, -0.4911,  ..., -0.9192, -0.8507,  2.1633],
         [-0.4739, -0.4739, -0.5424,  ..., -1.0390, -1.0390,  2.1975],
         ...,
         [-0.9020, -0.8335, -0.9363,  ..., -1.4672, -1.2959,  2.2318],
         [-0.8507, -0.7822, -0.9363,  ..., -1.6042, -1.5014,  2.1804],
         [-0.8335, -0.8164, -0.9705,  ..., -1.6555, -1.5528,  2.1119]],

        [[-0.1975, -0.1975, -0.3025,  ..., -0.4776, -0.3725,  2.4111],
         [-0.2500, -0.2325, -0.3375,  ..., -0.7052, -0.6702,  2.3585],
         [-0.3025, -0.2850, -0.3901,  ..., -0.7402, -0.8102,  2.3761],
         ...,
         [-0.4251, -0.2325, -0.3725,  ..., -1.0903, -1.0203,  2.4286],
         [-0.3901, -0.2325, -0.4251,  ..., -1.2304, -1.2304,  2.4111],
         [-0.4076, -0.2850, -0.4776,  ..., -1.2829, -1.2829,  2.3410]],

        [[-0.6715, -0.9853, -0.8807,  ..., -0.9678, -0.6890,  2.3960],
         [-0.7238, -1.0724, -0.9678,  ..., -1.2467, -1.0201,  2.3263],
         [-0.8284, -1.1247, -1.0201,  ..., -1.2641, -1.1596,  2.3786],
         ...,
         [-1.2293, -1.4733, -1.3861,  ..., -1.5081, -1.2641,  2.5180],
         [-1.1944, -1.4559, -1.4210,  ..., -1.6476, -1.4733,  2.4308],
         [-1.2293, -1.5256, -1.5081,  ..., -1.6824, -1.5256,  2.3611]]])

Was it really useful for you, as a human, to see all these numbers?

What is the shape? The size?
What are the statistics?
Are any of the values nan or inf?
Is it an image of a man holding a tench?

import lovely_tensors as lt
lt.monkey_patch()

Summary

numbers # torch.Tensor
tensor[3, 196, 196] n=115248 x∈[-2.118, 2.640] μ=-0.388 σ=1.073

Better, huh?

numbers[1,:6,1] # Still shows values if there are not too many.
tensor[6] x∈[-0.443, -0.197] μ=-0.311 σ=0.091 [-0.197, -0.232, -0.285, -0.373, -0.443, -0.338]
spicy = numbers[0,:12,0].clone()

spicy[0] *= 10000
spicy[1] /= 10000
spicy[2] = float('inf')
spicy[3] = float('-inf')
spicy[4] = float('nan')

spicy = spicy.reshape((2,6))
spicy # Spicy stuff
tensor[2, 6] n=12 x∈[-3.541e+03, -4.054e-05] μ=-393.842 σ=1.180e+03 +Inf! -Inf! NaN!
torch.zeros(10, 10) # A zero tensor - make it obvious
tensor[10, 10] all_zeros
spicy.v # Verbose
tensor[2, 6] n=12 x∈[-3.541e+03, -4.054e-05] μ=-393.842 σ=1.180e+03 +Inf! -Inf! NaN!
tensor([[-3.5405e+03, -4.0543e-05,         inf,        -inf,         nan, -6.1093e-01],
        [-6.1093e-01, -5.9380e-01, -5.9380e-01, -5.4243e-01, -5.4243e-01, -5.4243e-01]])
spicy.p # The plain old way
tensor([[-3.5405e+03, -4.0543e-05,         inf,        -inf,         nan, -6.1093e-01],
        [-6.1093e-01, -5.9380e-01, -5.9380e-01, -5.4243e-01, -5.4243e-01, -5.4243e-01]])

Going .deeper

numbers.deeper
tensor[3, 196, 196] n=115248 x∈[-2.118, 2.640] μ=-0.388 σ=1.073
  tensor[196, 196] n=38416 x∈[-2.118, 2.249] μ=-0.324 σ=1.036
  tensor[196, 196] n=38416 x∈[-1.966, 2.429] μ=-0.274 σ=0.973
  tensor[196, 196] n=38416 x∈[-1.804, 2.640] μ=-0.567 σ=1.178
# You can go deeper if you need to
numbers[:,:3,:5].deeper(2)
tensor[3, 3, 5] n=45 x∈[-1.316, -0.197] μ=-0.593 σ=0.306
  tensor[3, 5] n=15 x∈[-0.765, -0.337] μ=-0.492 σ=0.124
    tensor[5] x∈[-0.440, -0.337] μ=-0.385 σ=0.041 [-0.354, -0.337, -0.405, -0.440, -0.388]
    tensor[5] x∈[-0.662, -0.405] μ=-0.512 σ=0.108 [-0.405, -0.423, -0.491, -0.577, -0.662]
    tensor[5] x∈[-0.765, -0.474] μ=-0.580 σ=0.125 [-0.474, -0.474, -0.542, -0.645, -0.765]
  tensor[3, 5] n=15 x∈[-0.513, -0.197] μ=-0.321 σ=0.099
    tensor[5] x∈[-0.303, -0.197] μ=-0.243 σ=0.055 [-0.197, -0.197, -0.303, -0.303, -0.215]
    tensor[5] x∈[-0.408, -0.232] μ=-0.327 σ=0.084 [-0.250, -0.232, -0.338, -0.408, -0.408]
    tensor[5] x∈[-0.513, -0.285] μ=-0.394 σ=0.102 [-0.303, -0.285, -0.390, -0.478, -0.513]
  tensor[3, 5] n=15 x∈[-1.316, -0.672] μ=-0.964 σ=0.176
    tensor[5] x∈[-0.985, -0.672] μ=-0.846 σ=0.123 [-0.672, -0.985, -0.881, -0.776, -0.916]
    tensor[5] x∈[-1.212, -0.724] μ=-0.989 σ=0.179 [-0.724, -1.072, -0.968, -0.968, -1.212]
    tensor[5] x∈[-1.316, -0.828] μ=-1.058 σ=0.179 [-0.828, -1.125, -1.020, -1.003, -1.316]

Now in .rgb color

The important queston - is it our man?

numbers.rgb

Maaaaybe? Looks like someone normalized him.

in_stats = ( (0.485, 0.456, 0.406),     # mean 
             (0.229, 0.224, 0.225) )    # std

# numbers.rgb(in_stats, cl=True) # For channel-last input format
numbers.rgb(in_stats)

It’s indeed our hero, the Tenchman!

.plt the statistics

(numbers+3).plt

(numbers+3).plt(center="mean", max_s=1000)

(numbers+3).plt(center="range")

See the .chans

# .chans will map values betwen [0,1] to colors.
# Make our values fit into that range to avoid clipping.
mean = torch.tensor(in_stats[0])[:,None,None]
std = torch.tensor(in_stats[1])[:,None,None]
numbers_01 = (numbers*std + mean)
numbers_01
tensor[3, 196, 196] n=115248 x∈[0., 1.000] μ=0.361 σ=0.248
numbers_01.chans

Let’s try with a Convolutional Neural Network

from torchvision.models import vgg11
features: torch.nn.Sequential = vgg11().features

# I saved the first 5 layers in "features.pt"
_ = features.load_state_dict(torch.load("../features.pt"), strict=False)
# Activatons of the second max pool layer of VGG11
acts = (features[:6](numbers[None])[0]/2) # /2 to reduce clipping
acts
tensor[128, 49, 49] n=307328 x∈[0., 12.508] μ=0.367 σ=0.634 grad DivBackward0
acts.chans

Grouping

# Make 8 images with progressively higher brightness and stack them 2x2x2.
eight_images = (torch.stack([numbers]*8)
                    .add(torch.linspace(-3, 3, 8)[:,None,None,None])
                    .mul(torch.tensor(in_stats[1])[:,None,None])
                    .add(torch.tensor(in_stats[0])[:,None,None])
                    .clamp(0,1)
                    .view(2,2,2,3,196,196)
)
eight_images
tensor[2, 2, 2, 3, 196, 196] n=921984 x∈[0., 1.000] μ=0.411 σ=0.369
eight_images.rgb

# Weights of the second conv layer of VGG11
features[3].weight
Parameter containing:
Parameter[128, 64, 3, 3] n=73728 x∈[-0.783, 0.776] μ=-0.004 σ=0.065 grad

Quick and dirty normalization. I want +/- 2σ to fall in the range [0..1]

weights = features[3].weight.data
weights = weights / (2*2*weights.std()) # *2 because we want 2σ on both sides, so 4σ
weights += weights.std() * 2
weights.plt

# Weights of the second conv layer (64ch -> 128ch) of VGG11,
# grouped per output channel.
weights.chans(frame_px=1, gutter_px=0)

It’s a bit hard to see. Scale up 10x, but onyl show the first 4 filters.

weights[:4].chans(frame_px=1, gutter_px=0, scale=10)

Options

See docs for more

from lovely_tensors import set_config, config, lovely, get_config
set_config(precision=5, sci_mode=True, color=False)
torch.tensor([1, 2, torch.nan])
tensor[3] μ=1.50000e+00 σ=7.07107e-01 NaN! [1.00000e+00, 2.00000e+00, nan]
set_config(precision=None, sci_mode=None, color=None) # None -> Reset to defaults
print(torch.tensor([1., 2]))
# Or with config context manager.
with config(sci_mode=True, precision=5):
    print(torch.tensor([1., 2]))

print(torch.tensor([1., 2]))
tensor[2] μ=1.500 σ=0.707 [1.000, 2.000]
tensor[2] μ=1.50000e+00 σ=7.07107e-01 [1.00000e+00, 2.00000e+00]
tensor[2] μ=1.500 σ=0.707 [1.000, 2.000]

Without .monkey_patch

lt.lovely(spicy)
tensor[2, 6] n=12 x∈[-3.541e+03, -4.054e-05] μ=-393.842 σ=1.180e+03 +Inf! -Inf! NaN!
lt.lovely(spicy, verbose=True)
tensor[2, 6] n=12 x∈[-3.541e+03, -4.054e-05] μ=-393.842 σ=1.180e+03 +Inf! -Inf! NaN!
tensor([[-3.5405e+03, -4.0543e-05,         inf,        -inf,         nan, -6.1093e-01],
        [-6.1093e-01, -5.9380e-01, -5.9380e-01, -5.4243e-01, -5.4243e-01, -5.4243e-01]])
lt.lovely(numbers, depth=1)
tensor[3, 196, 196] n=115248 x∈[-2.118, 2.640] μ=-0.388 σ=1.073
  tensor[196, 196] n=38416 x∈[-2.118, 2.249] μ=-0.324 σ=1.036
  tensor[196, 196] n=38416 x∈[-1.966, 2.429] μ=-0.274 σ=0.973
  tensor[196, 196] n=38416 x∈[-1.804, 2.640] μ=-0.567 σ=1.178
lt.rgb(numbers, in_stats)

lt.plot(numbers, center="mean")

lt.chans(numbers_01)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lovely-tensors-0.1.10.tar.gz (6.8 MB view details)

Uploaded Source

Built Distribution

lovely_tensors-0.1.10-py3-none-any.whl (17.0 kB view details)

Uploaded Python 3

File details

Details for the file lovely-tensors-0.1.10.tar.gz.

File metadata

  • Download URL: lovely-tensors-0.1.10.tar.gz
  • Upload date:
  • Size: 6.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for lovely-tensors-0.1.10.tar.gz
Algorithm Hash digest
SHA256 1cc3e988a5d732f5e4ad7ea6e7cf62efd997c0b298a8d720e2ad70f7514dd8e5
MD5 bb8fdc1087a9fe0a12bf68f9f7aada54
BLAKE2b-256 f1e525fdd3413d39ef2f4f6049c071c9c07bfe2637b3630f060ee93b480a5c41

See more details on using hashes here.

File details

Details for the file lovely_tensors-0.1.10-py3-none-any.whl.

File metadata

File hashes

Hashes for lovely_tensors-0.1.10-py3-none-any.whl
Algorithm Hash digest
SHA256 e1a0b458f2a53b922d954e50267bc8d93edb8625af33bbc1926297e825b4d9bb
MD5 b759bb32f0194b43aaed424c0cdf8225
BLAKE2b-256 3164272464a06de7ca09fa2284a04068573d22c87255dfb8bc14378aa38da580

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page