Skip to main content

❤️ Lovely Tensors

Project description

❤️ Lovely Tensors

More lovely stuff

Working with numbers
Community

Install

pip install lovely-tensors

or

mamba install lovely-tensors

or

conda install -c conda-forge lovely-tensors

How to use

How often do you find yourself debugging PyTorch code? You dump a tensor to the cell output, and see this:

numbers
tensor([[[-0.3541, -0.3369, -0.4054,  ..., -0.5596, -0.4739,  2.2489],
         [-0.4054, -0.4226, -0.4911,  ..., -0.9192, -0.8507,  2.1633],
         [-0.4739, -0.4739, -0.5424,  ..., -1.0390, -1.0390,  2.1975],
         ...,
         [-0.9020, -0.8335, -0.9363,  ..., -1.4672, -1.2959,  2.2318],
         [-0.8507, -0.7822, -0.9363,  ..., -1.6042, -1.5014,  2.1804],
         [-0.8335, -0.8164, -0.9705,  ..., -1.6555, -1.5528,  2.1119]],

        [[-0.1975, -0.1975, -0.3025,  ..., -0.4776, -0.3725,  2.4111],
         [-0.2500, -0.2325, -0.3375,  ..., -0.7052, -0.6702,  2.3585],
         [-0.3025, -0.2850, -0.3901,  ..., -0.7402, -0.8102,  2.3761],
         ...,
         [-0.4251, -0.2325, -0.3725,  ..., -1.0903, -1.0203,  2.4286],
         [-0.3901, -0.2325, -0.4251,  ..., -1.2304, -1.2304,  2.4111],
         [-0.4076, -0.2850, -0.4776,  ..., -1.2829, -1.2829,  2.3410]],

        [[-0.6715, -0.9853, -0.8807,  ..., -0.9678, -0.6890,  2.3960],
         [-0.7238, -1.0724, -0.9678,  ..., -1.2467, -1.0201,  2.3263],
         [-0.8284, -1.1247, -1.0201,  ..., -1.2641, -1.1596,  2.3786],
         ...,
         [-1.2293, -1.4733, -1.3861,  ..., -1.5081, -1.2641,  2.5180],
         [-1.1944, -1.4559, -1.4210,  ..., -1.6476, -1.4733,  2.4308],
         [-1.2293, -1.5256, -1.5081,  ..., -1.6824, -1.5256,  2.3611]]])

Was it really useful for you, as a human, to see all these numbers?

What is the shape? The size?
What are the statistics?
Are any of the values nan or inf?
Is it an image of a man holding a tench?

import lovely_tensors as lt
lt.monkey_patch()

Summary

numbers # torch.Tensor
tensor[3, 196, 196] n=115248 (0.4Mb) x∈[-2.118, 2.640] μ=-0.388 σ=1.073

Better, huh?

numbers[1,:6,1] # Still shows values if there are not too many.
tensor[6] x∈[-0.443, -0.197] μ=-0.311 σ=0.091 [-0.197, -0.232, -0.285, -0.373, -0.443, -0.338]
spicy = numbers[0,:12,0].clone()

spicy[0] *= 10000
spicy[1] /= 10000
spicy[2] = float('inf')
spicy[3] = float('-inf')
spicy[4] = float('nan')

spicy = spicy.reshape((2,6))
spicy # Spicy stuff
tensor[2, 6] n=12 x∈[-3.541e+03, -4.054e-05] μ=-393.842 σ=1.180e+03 +Inf! -Inf! NaN!
torch.zeros(10, 10) # A zero tensor - make it obvious
tensor[10, 10] n=100 all_zeros
spicy.v # Verbose
tensor[2, 6] n=12 x∈[-3.541e+03, -4.054e-05] μ=-393.842 σ=1.180e+03 +Inf! -Inf! NaN!
tensor([[-3.5405e+03, -4.0543e-05,         inf,        -inf,         nan, -6.1093e-01],
        [-6.1093e-01, -5.9380e-01, -5.9380e-01, -5.4243e-01, -5.4243e-01, -5.4243e-01]])
spicy.p # The plain old way
tensor([[-3.5405e+03, -4.0543e-05,         inf,        -inf,         nan, -6.1093e-01],
        [-6.1093e-01, -5.9380e-01, -5.9380e-01, -5.4243e-01, -5.4243e-01, -5.4243e-01]])

Named dimensions

named_numbers = numbers.rename("C", "H","W")
named_numbers
tensor[C=3, H=196, W=196] n=115248 (0.4Mb) x∈[-2.118, 2.640] μ=-0.388 σ=1.073

Going .deeper

numbers.deeper
tensor[3, 196, 196] n=115248 (0.4Mb) x∈[-2.118, 2.640] μ=-0.388 σ=1.073
  tensor[196, 196] n=38416 x∈[-2.118, 2.249] μ=-0.324 σ=1.036
  tensor[196, 196] n=38416 x∈[-1.966, 2.429] μ=-0.274 σ=0.973
  tensor[196, 196] n=38416 x∈[-1.804, 2.640] μ=-0.567 σ=1.178
# You can go deeper if you need to
# And we can use `.deeper` with named dimensions.

named_numbers.deeper(2)
tensor[C=3, H=196, W=196] n=115248 (0.4Mb) x∈[-2.118, 2.640] μ=-0.388 σ=1.073
  tensor[H=196, W=196] n=38416 x∈[-2.118, 2.249] μ=-0.324 σ=1.036
    tensor[W=196] x∈[-1.912, 2.249] μ=-0.673 σ=0.522
    tensor[W=196] x∈[-1.861, 2.163] μ=-0.738 σ=0.418
    tensor[W=196] x∈[-1.758, 2.198] μ=-0.806 σ=0.397
    tensor[W=196] x∈[-1.656, 2.249] μ=-0.849 σ=0.369
    tensor[W=196] x∈[-1.673, 2.198] μ=-0.857 σ=0.357
    tensor[W=196] x∈[-1.656, 2.146] μ=-0.848 σ=0.372
    tensor[W=196] x∈[-1.433, 2.215] μ=-0.784 σ=0.397
    tensor[W=196] x∈[-1.279, 2.249] μ=-0.695 σ=0.486
    tensor[W=196] x∈[-1.364, 2.249] μ=-0.637 σ=0.539
    ...
  tensor[H=196, W=196] n=38416 x∈[-1.966, 2.429] μ=-0.274 σ=0.973
    tensor[W=196] x∈[-1.861, 2.411] μ=-0.529 σ=0.556
    tensor[W=196] x∈[-1.826, 2.359] μ=-0.562 σ=0.473
    tensor[W=196] x∈[-1.756, 2.376] μ=-0.622 σ=0.458
    tensor[W=196] x∈[-1.633, 2.429] μ=-0.664 σ=0.430
    tensor[W=196] x∈[-1.651, 2.376] μ=-0.669 σ=0.399
    tensor[W=196] x∈[-1.633, 2.376] μ=-0.701 σ=0.391
    tensor[W=196] x∈[-1.563, 2.429] μ=-0.670 σ=0.380
    tensor[W=196] x∈[-1.475, 2.429] μ=-0.616 σ=0.386
    tensor[W=196] x∈[-1.511, 2.429] μ=-0.593 σ=0.399
    ...
  tensor[H=196, W=196] n=38416 x∈[-1.804, 2.640] μ=-0.567 σ=1.178
    tensor[W=196] x∈[-1.717, 2.396] μ=-0.982 σ=0.350
    tensor[W=196] x∈[-1.752, 2.326] μ=-1.034 σ=0.314
    tensor[W=196] x∈[-1.648, 2.379] μ=-1.086 σ=0.314
    tensor[W=196] x∈[-1.630, 2.466] μ=-1.121 σ=0.305
    tensor[W=196] x∈[-1.717, 2.448] μ=-1.120 σ=0.302
    tensor[W=196] x∈[-1.717, 2.431] μ=-1.166 σ=0.314
    tensor[W=196] x∈[-1.560, 2.448] μ=-1.124 σ=0.326
    tensor[W=196] x∈[-1.421, 2.431] μ=-1.064 σ=0.383
    tensor[W=196] x∈[-1.526, 2.396] μ=-1.047 σ=0.417
    ...

Now in .rgb color

The important queston - is it our man?

numbers.rgb

Maaaaybe? Looks like someone normalized him.

in_stats = ( (0.485, 0.456, 0.406),     # mean 
             (0.229, 0.224, 0.225) )    # std

# numbers.rgb(in_stats, cl=True) # For channel-last input format
numbers.rgb(in_stats)

It’s indeed our hero, the Tenchman!

.plt the statistics

(numbers+3).plt

(numbers+3).plt(center="mean", max_s=1000)

(numbers+3).plt(center="range")

See the .chans

# .chans will map values betwen [-1,1] to colors.
# Make our values fit into that range to avoid clipping.
mean = torch.tensor(in_stats[0])[:,None,None]
std = torch.tensor(in_stats[1])[:,None,None]
numbers_01 = (numbers*std + mean)
numbers_01
tensor[3, 196, 196] n=115248 (0.4Mb) x∈[0., 1.000] μ=0.361 σ=0.248
numbers_01.chans

Let’s try with a Convolutional Neural Network

from torchvision.models import vgg11
features: torch.nn.Sequential = vgg11().features

# I saved the first 5 layers in "features.pt"
_ = features.load_state_dict(torch.load("../features.pt", weights_only=True), strict=False)
# Activatons of the second max pool layer of VGG11
acts = (features[:6](numbers[None])[0]/2) # /2 to reduce clipping
acts
tensor[128, 49, 49] n=307328 (1.2Mb) x∈[0., 12.508] μ=0.367 σ=0.634 grad DivBackward0
acts[:4].chans(cmap="coolwarm", scale=4)

Grouping

# Make 8 images with progressively higher brightness and stack them 2x2x2.
eight_images = (torch.stack([numbers]*8)
                    .add(torch.linspace(-3, 3, 8)[:,None,None,None])
                    .mul(torch.tensor(in_stats[1])[:,None,None])
                    .add(torch.tensor(in_stats[0])[:,None,None])
                    .clamp(0,1)
                    .view(2,2,2,3,196,196)
)
eight_images
tensor[2, 2, 2, 3, 196, 196] n=921984 (3.5Mb) x∈[0., 1.000] μ=0.411 σ=0.369
eight_images.rgb

# Weights of the second conv layer of VGG11
features[3].weight
Parameter containing:
Parameter[128, 64, 3, 3] n=73728 (0.3Mb) x∈[-0.783, 0.776] μ=-0.004 σ=0.065 grad

I want +/- 2σ to fall in the range [-1..1]

weights = features[3].weight.data
weights = weights / (2*2*weights.std()) # *2 because we want 2σ on both sides, so 4σ
# weights += weights.std() * 2
weights.plt

# Weights of the second conv layer (64ch -> 128ch) of VGG11,
# grouped per output channel.
weights.chans(frame_px=1, gutter_px=0)

It’s a bit hard to see. Scale up 10x, but onyl show the first 4 filters.

weights[:4].chans(frame_px=1, gutter_px=0, scale=10)

Options | Docs

from lovely_tensors import set_config, config, lovely, get_config
set_config(precision=1, sci_mode=True, color=False)
torch.tensor([1, 2, torch.nan])
tensor[3] μ=1.5e+00 σ=7.1e-01 NaN! [1.0e+00, 2.0e+00, nan]
set_config(precision=None, sci_mode=None, color=None) # None -> Reset to defaults
print(torch.tensor([1., 2]))
# Or with config context manager.
with config(sci_mode=True, precision=5):
    print(torch.tensor([1., 2]))

print(torch.tensor([1., 2]))
tensor[2] μ=1.500 σ=0.707 [1.000, 2.000]
tensor[2] μ=1.50000e+00 σ=7.07107e-01 [1.00000e+00, 2.00000e+00]
tensor[2] μ=1.500 σ=0.707 [1.000, 2.000]

Without .monkey_patch

lt.lovely(spicy)
tensor[2, 6] n=12 x∈[-3.541e+03, -4.054e-05] μ=-393.842 σ=1.180e+03 +Inf! -Inf! NaN!
lt.lovely(spicy, verbose=True)
tensor[2, 6] n=12 x∈[-3.541e+03, -4.054e-05] μ=-393.842 σ=1.180e+03 +Inf! -Inf! NaN!
tensor([[-3.5405e+03, -4.0543e-05,         inf,        -inf,         nan, -6.1093e-01],
        [-6.1093e-01, -5.9380e-01, -5.9380e-01, -5.4243e-01, -5.4243e-01, -5.4243e-01]])
lt.lovely(numbers, depth=1)
tensor[3, 196, 196] n=115248 (0.4Mb) x∈[-2.118, 2.640] μ=-0.388 σ=1.073
  tensor[196, 196] n=38416 x∈[-2.118, 2.249] μ=-0.324 σ=1.036
  tensor[196, 196] n=38416 x∈[-1.966, 2.429] μ=-0.274 σ=0.973
  tensor[196, 196] n=38416 x∈[-1.804, 2.640] μ=-0.567 σ=1.178
lt.rgb(numbers, in_stats)

lt.plot(numbers, center="mean")

lt.chans(numbers_01)

Matplotlib integration | Docs

numbers.rgb(in_stats).fig # matplotlib figure

(numbers*0.3+0.5).chans.fig # matplotlib figure

numbers.plt.fig.savefig('pretty.svg') # Save it
!file pretty.svg; rm pretty.svg
pretty.svg: SVG Scalable Vector Graphics image

Add content to existing Axes

fig = plt.figure(figsize=(8,3))
fig.set_constrained_layout(True)
gs = fig.add_gridspec(2,2)
ax1 = fig.add_subplot(gs[0, :])
ax2 = fig.add_subplot(gs[1, 0])
ax3 = fig.add_subplot(gs[1,1:])

ax2.set_axis_off()
ax3.set_axis_off()

numbers_01.plt(ax=ax1)
numbers_01.rgb(ax=ax2)
numbers_01.chans(ax=ax3);

torch.compile()

Just works.

def func(x):
    return x*2

if torch.__version__ >= "2.0":
    func = torch.compile(func)

func(torch.tensor([1,2,3]))
tensor[3] i64 x∈[2, 6] μ=4.000 σ=2.000 [2, 4, 6]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lovely_tensors-0.1.16.tar.gz (19.4 kB view details)

Uploaded Source

Built Distribution

lovely_tensors-0.1.16-py3-none-any.whl (17.6 kB view details)

Uploaded Python 3

File details

Details for the file lovely_tensors-0.1.16.tar.gz.

File metadata

  • Download URL: lovely_tensors-0.1.16.tar.gz
  • Upload date:
  • Size: 19.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for lovely_tensors-0.1.16.tar.gz
Algorithm Hash digest
SHA256 faf5d1c675d517e4e736131feeb28efe9d7a2125dbe5e6829675d590524ebc59
MD5 e152a5244edc0c0a5bc7498ebc993122
BLAKE2b-256 bba68f0a485575fc0a1a441ec9747635dc128d1860f8f42106cd358e4b52e589

See more details on using hashes here.

File details

Details for the file lovely_tensors-0.1.16-py3-none-any.whl.

File metadata

File hashes

Hashes for lovely_tensors-0.1.16-py3-none-any.whl
Algorithm Hash digest
SHA256 edebed54ead805fa8041503c2e4617214ab3479a7c4870a33b4cd36cd0e21299
MD5 9cb21f32ee8db76610c2448cb1267399
BLAKE2b-256 157ad64c6cdbeeb9cc1cb841328299cd7121c806931cdbb01b8ccc1d9466b0ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page