Laplacian Score-regularized CAE
Project description
Laplacian Score-regularized Concrete Autoencoders
Requirements:
- torch >= 1.9
- scikit-learn >= 0.24
- omegaconf >= 2.0.6
- scipy >= 1.6.0
- matplotlib
How to use:
Install the package from pypi:
pip install lscae
Prepare your dataset by applying Standard Scaler on it
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
dataset = scaler.fit_transform(dataset)
Then load it as torch.utils.data.Dataset and run feature selection
Please see an example here
import lscae
import torch
from omegaconf import OmegaConf
# define you cfg parameters
cfg = OmegaConf.create({"input_dim": 100})
# define you dataset (Torch based)
dataset = torch.utils.data.Dataset(...)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=cfg.batch_size, shuffle=True, drop_last=True)
lscae.Lscae(kwargs=cfg).select_features(dataloader)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
lscae-0.0.2.tar.gz
(6.2 kB
view details)
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
lscae-0.0.2-py3-none-any.whl
(6.2 kB
view details)
File details
Details for the file lscae-0.0.2.tar.gz.
File metadata
- Download URL: lscae-0.0.2.tar.gz
- Upload date:
- Size: 6.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
4c03c8857b41127dcea073a1ca47d79a706b899d90d3ff7d6b17334525b02e06
|
|
| MD5 |
d486981bdf8976083d27846f14256c77
|
|
| BLAKE2b-256 |
fb3702055562c09a2f294c949b093684e54dcf3cb8921d08db2d624a3c375a73
|
File details
Details for the file lscae-0.0.2-py3-none-any.whl.
File metadata
- Download URL: lscae-0.0.2-py3-none-any.whl
- Upload date:
- Size: 6.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
b18ca361cfe9cdd43a6406567634de711577aef7db9eabf3c2f3deaa190d1725
|
|
| MD5 |
2a9789e0a972b8253ff721c09be1cfb1
|
|
| BLAKE2b-256 |
f09da4a2057cd01fd2e94b7dcc8778ceb7f1e09030ecf70f6c1abef903a2d86a
|