High quality model for lungs segmentation.
Project description
lungs_segmentation
Automated lung segmentation in chest-x ray
Train pipeline: https://github.com/alimbekovKZ/lungs_segmentation_train
Installation
pip install lungs-segmentation
Example inference
Jupyter notebook with the example:
WebApp
https://lungssegmentation.herokuapp.com/
Models weights
model | best dice | Mb |
---|---|---|
resnet34 | 0.9657 | 103.4 |
densenet121 | 0.9655 | 62.8 |
Usage
Code example for resnet34:
from lungs_segmentation.pre_trained_models import create_model
import lungs_segmentation.inference as inference
model = create_model("resnet34")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
plt.figure(figsize=(20,40))
plt.subplot(1,1,1)
image, mask = inference.inference(model,'739px-Chest_Xray_PA_3-8-2010.png', 0.2)
plt.imshow(inference.img_with_masks( image, [mask[0], mask[1]], alpha = 0.1))
Results on data from the Internet
resnet34
densenet121
Authors
Renat Alimbekov, Ivan Vassilenko, Abylaikhan Turlassov
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
lungs_segmentation-1.1.2.tar.gz
(15.1 kB
view hashes)
Built Distribution
Close
Hashes for lungs_segmentation-1.1.2-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 890b8c0c3fd37d2b3e7ada13bc2fda5955ece4c004691d99cb3451fe4e527b06 |
|
MD5 | ca872c89ecac23933754d2e90cd0a3a4 |
|
BLAKE2b-256 | 6fd7623a222151a50c2b3034c4a25fb036355b0959bdbb95e44e638dc90614e3 |