Skip to main content

Create 3D images from atomic coordinates

Project description

Macromolecular Voxelization

Last release Python version Documentation Test status Test coverage Last commit

Macromol Voxelize is a highly performant library for converting atomic structures into 3D images, i.e. images where each channel might represent a different element type, and each voxel might be on the order of 1Å in each dimension. The intended use case is machine learning. More specifically, it is to allow image-based model architectures (such as CNNs) to be applied to macromolecular data.

Some noteworthy aspects of this library:

  • Algorithm: The voxelization procedure implemented by this library is to (i) treat each atom as a sphere and (ii) fill each voxel in proportion to amount it overlaps that sphere. Although this procedure may seem intuitive, it's actually quite unique. Macromolecular structures are typically voxelized in one of two ways: either by assigning the entire density for each atom to a single voxel, or by modeling each atom as a 3D Gaussian distribution. The advantage of the overlap-based procedure is that the image changes more smoothly as atoms move around. It also makes it easier to infer the exact position of each atom from just the image. The disadvantage is that calculating sphere/cube overlap volumes turns out to be quite difficult. Here, the overlap library is used to make this calculation.

  • Performance: Because voxelization can be a bottleneck during training, most of this library is implemented in C++. However, the API is in Python, for compatibility with common machine learning frameworks such as PyTorch, JAX, etc. Note that the voxelization algorithm is deliberately single-threaded. This is a bit counter-intuitive, since voxelization is an embarrassingly parallel problem. However, in the context of loading training examples, it's more efficient to have a larger number of single-threaded data loader subprocesses than a smaller number of multi-threaded ones.

Here's an example showing how to voxelize a set of atoms:

import polars as pl
import macromol_voxelize as mmvox

# Load the atoms in question.  These particular coordinates are for a 
# methionine amino acid.  This is a hard-coded dataframe for simplicity, but 
# normally you'd use <https://github.com/kalekundert/macromol_dataframe> for 
# this step.
atoms = pl.DataFrame([
        dict(element='N', x= 1.052, y=-1.937, z=-1.165),
        dict(element='C', x= 1.540, y=-0.561, z=-1.165),
        dict(element='C', x= 3.049, y=-0.521, z=-1.165),
        dict(element='O', x= 3.733, y=-1.556, z=-1.165),
        dict(element='C', x= 0.965, y= 0.201, z= 0.059),
        dict(element='C', x=-0.570, y= 0.351, z= 0.100),
        dict(element='S', x=-1.037, y= 1.495, z= 1.409),
        dict(element='C', x=-2.800, y= 1.146, z= 1.451),
])

# Add a "radius_A" column to the dataframe.  (The "_A" suffix means "in units 
# of angstroms".)  This function simply gives each atom the same radius, but 
# you could calculate radii however you want.
atoms = mmvox.set_atom_radius_A(atoms, 0.75)

# Add a "channels" column to the dataframe.  This function assigns channels by 
# matching a series of regular expressions against each atom's element name, 
# but again you could do this however you want.
atoms = mmvox.set_atom_channels_by_element(atoms, ['C', 'N', 'O', 'S|SE'])

# Create the 3D image.  Note that this step is not specific to macromolecules 
# in any way.  It just expects a data frame with "x", "y", "z", "radius_A", 
# "occupancy", and "channels" columns.
img_params = mmvox.ImageParams(
        channels=4,
        grid=mmvox.Grid(
            length_voxels=8,
            resolution_A=1,
            center_A=[0, 0, 0],
        ),
)
img = mmvox.image_from_atoms(atoms, img_params)

Here's a rendering of this image:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

macromol_voxelize-0.4.0.tar.gz (122.7 kB view details)

Uploaded Source

Built Distributions

macromol_voxelize-0.4.0-pp310-pypy310_pp73-win_amd64.whl (147.5 kB view details)

Uploaded PyPy Windows x86-64

macromol_voxelize-0.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (197.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

macromol_voxelize-0.4.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (211.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

macromol_voxelize-0.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl (155.6 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

macromol_voxelize-0.4.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (165.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

macromol_voxelize-0.4.0-cp312-cp312-win_amd64.whl (148.9 kB view details)

Uploaded CPython 3.12 Windows x86-64

macromol_voxelize-0.4.0-cp312-cp312-win32.whl (138.7 kB view details)

Uploaded CPython 3.12 Windows x86

macromol_voxelize-0.4.0-cp312-cp312-musllinux_1_1_x86_64.whl (712.8 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

macromol_voxelize-0.4.0-cp312-cp312-musllinux_1_1_i686.whl (772.5 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

macromol_voxelize-0.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (205.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

macromol_voxelize-0.4.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (215.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

macromol_voxelize-0.4.0-cp312-cp312-macosx_11_0_arm64.whl (159.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

macromol_voxelize-0.4.0-cp312-cp312-macosx_10_9_x86_64.whl (169.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

macromol_voxelize-0.4.0-cp311-cp311-win_amd64.whl (148.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

macromol_voxelize-0.4.0-cp311-cp311-win32.whl (138.5 kB view details)

Uploaded CPython 3.11 Windows x86

macromol_voxelize-0.4.0-cp311-cp311-musllinux_1_1_x86_64.whl (714.7 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

macromol_voxelize-0.4.0-cp311-cp311-musllinux_1_1_i686.whl (774.0 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

macromol_voxelize-0.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (207.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

macromol_voxelize-0.4.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (217.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

macromol_voxelize-0.4.0-cp311-cp311-macosx_11_0_arm64.whl (160.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

macromol_voxelize-0.4.0-cp311-cp311-macosx_10_9_x86_64.whl (168.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

macromol_voxelize-0.4.0-cp310-cp310-win_amd64.whl (147.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

macromol_voxelize-0.4.0-cp310-cp310-win32.whl (137.4 kB view details)

Uploaded CPython 3.10 Windows x86

macromol_voxelize-0.4.0-cp310-cp310-musllinux_1_1_x86_64.whl (714.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

macromol_voxelize-0.4.0-cp310-cp310-musllinux_1_1_i686.whl (773.4 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

macromol_voxelize-0.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (206.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

macromol_voxelize-0.4.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (216.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

macromol_voxelize-0.4.0-cp310-cp310-macosx_11_0_arm64.whl (158.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

macromol_voxelize-0.4.0-cp310-cp310-macosx_10_9_x86_64.whl (167.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file macromol_voxelize-0.4.0.tar.gz.

File metadata

  • Download URL: macromol_voxelize-0.4.0.tar.gz
  • Upload date:
  • Size: 122.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for macromol_voxelize-0.4.0.tar.gz
Algorithm Hash digest
SHA256 0c7078e31e15b11e25dee5a7ef31b8f905a2c9ffb943c9048228d96f98ad1c95
MD5 ad9249faefc9c34c762d9ede0efdb895
BLAKE2b-256 3c158682a09d3d00c3fbcc78f389b5492c1d0386f6c9a151d98994ea3d0a8a2e

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 917fe3f501f8e90c5fa64fbd0c60878224dae4dabf963eb007ce7594a6fc53be
MD5 23b235031c3fbf30f408747a89c684dc
BLAKE2b-256 ce086f1d1570a20fcc8498992c693af94949d884a81ad682851ba7f210a33fea

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9ceae1e5873dd3ede15f3df1eeb410367faa813d3604c13955f9bdda8e8bf82
MD5 badfa4abe5ad77de5747187297df6c57
BLAKE2b-256 e627101a727f63811577258bff6993852962b36604812cd770c8b3857d89a766

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8904f45c5cbfba595b90e3f9ee45311954a4a37b4706723ca8a79d2739d7cf5d
MD5 403688b3894e9b6f1e9bf81097e4072c
BLAKE2b-256 173befe63ecd061976775e1b9547a036afb03272d23b131bbceba5e3a7ee0955

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6dd35c0ad1b7c0707f7b36c04483fc9a7e23be4bb5870a0fb646623e29c03cd4
MD5 3c436af5767756becb5fc11aa2b048cd
BLAKE2b-256 bb926662bf4546dc0bd801864f89734b68c12b814e9acf12fb00a73e2003cb75

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 346f68b371604204d3baeb0f37e87fd14f1cb8710ea8bba7b306ec764d627094
MD5 fbaaecb9d327c85ee4606fc0d0ad96be
BLAKE2b-256 0700fdbf8b19008f16bba3792cf3c5c6ef36ff38f91acb1312ae2f97c517b210

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c1e58bf2376e93fc4c6db90f847cf52607296d441e71e52c8035337804412864
MD5 ff4cad46aa78be7e9b2aef2995807acb
BLAKE2b-256 449bb8da83dc926cb0154f2a878d57348d9882031485eef337010f0d0212f18a

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 24580124b3b95f0f3a08ec85ba78e893a8764bdb2fe9e556081a1788fce8af56
MD5 92d44e88886285aaa60d773d00331acb
BLAKE2b-256 ec44682b6747ae6fb18616ea9e0b0c27acbc5a3adbe3e3199688f492343b20f4

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0295d9e99411141aa7264ed5e6b4e775525750a4bbe6d3e1afc5cc168dc23652
MD5 cd85188fe858ffc3a5cbb303896bde40
BLAKE2b-256 72b4a032d7915e1a9f0f983882ad920ddeefca5dc4dbce07967cfdf66e6f342d

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 06afe14d8460114898ab84715b3826c1ab9513d21e2ac5b21ef3cbc5cc2845d1
MD5 9f6c3868943f8503e3775386100182bd
BLAKE2b-256 494ef3f9cf0caef3a505bf8d439697e8c7715e293b2f12786d00c3b6409a3767

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eac755d376b001ab1bb803422ad1d2beb553784468f9970a923bca7a13f36b9e
MD5 8eb76e344977cf549d638ccc346304b1
BLAKE2b-256 7a505644e4942942f0d23449d0bd409b2130eea3bed356ef68c0f80cfe6348ce

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 de2c47f431f5fd6820774df86257ee5bf4953f46391edaebc650c06531e13e9c
MD5 f5314ffa9694f3d317afd21c28c523f9
BLAKE2b-256 ee15b0c36588b513c96464ba6079289c97d85d5a51d14281b8d37f488bc9476c

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5d349b83908b1d0c2106670b33adace5e12a3c9277d02a9608deeac854b967a2
MD5 2106a3cb379f8aae5aa8c341f9a8cd41
BLAKE2b-256 331af3bfa6dba64334d5ad17c71db7386dbc6cf117bf15ef0c30e9f4e9821f65

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 77f11ab2efc274ba2b8d5716e8fc0b81dcad0e0ae61b90bd7f322254747506b1
MD5 ab648d1b440e7afffe3f4f254aa585ca
BLAKE2b-256 8acb2e9a28b1f6e784ae872d2c06429f9f776b7413cd8c82f7d782d06103069d

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8974aaeb8e035e0291a15c43a7ee63bdedb5decd8cfd5fdf2bccf07a694eb58c
MD5 da11e7420ae9f079f8caf328fd3dcf0a
BLAKE2b-256 1477e7ccadfa5b753a0ae2a945f02aaf411ec5e596069a2c8dbc7d4d0290fd04

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 98d16e9d92d927f1b56324201c43f024ea9d4a1ca15d043f72dc8a297a495a66
MD5 3ed4c12ca9583f66256e03a6ccc46625
BLAKE2b-256 ccbf0e0a6f813255c6d746f3dad70a2fd3980180f2ecc26194d5292194b9238d

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 85a97dd12be26976dc99682287e275d360028812bb38e62e6954e220a2109d0c
MD5 cecbbf7835f29f8b56e4a94d5fb883fa
BLAKE2b-256 d4ec52aef81c942ccfc493a75d2a5a5a2437b5772dba9a96bdacc82d2e3f36b7

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8a0afc0cb2c1bc9b15721eeef31de95ec6ced722cc0cce93c78891e0a60b177c
MD5 33e6aa57d72433169f451f6d8e531257
BLAKE2b-256 d12f88d9ea1c9db8f6d72296b0619e769ecf08e1128651c4058f2a86e1ad9212

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb01a8e3218f833c7b7d70b78485d2052272915f1fe385fd51d99f03a2a3f1a0
MD5 3ffb36b5e2da930d405c5531ed3836b7
BLAKE2b-256 e7ba42d9c57c9e94802e348d1ad1ac55b438437fddfa8f33d172169cd08c362b

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ee33d766211f0766b9427d6afb67430997d96ef717d846b2ba12b48ad5ebd34a
MD5 3a4396ed5c6cae191dd261a3bdf2ae32
BLAKE2b-256 217631c21f95156d33db8e510b318f02291642a04b6d780d498227b9bd085ee2

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b138bb2f75cb708884fb28f28775541faf1ee1db2d811989315be045634f89e4
MD5 26a1e56b377a050159e435f96ca29a73
BLAKE2b-256 2bf7741fb9870bf5ea1e9b935961e227b70a1e4618ec955fb08835184cf7abf6

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5c31cfc28aefbf2ffdde74dfbe3737e7a3f0c23eccdb04b8315a7f233890c38d
MD5 8079e73272d04bf15e4a339d0600aaa8
BLAKE2b-256 8668f9ebaa6417f7b34812dfbe0f46805487e6f627aedfed5fe1428d8dc54a91

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 649f57ca0e6509430ddb125e4f6f72827da4e6e2ce27802fd8d12c5281d08280
MD5 a1e80e2dd724e22cac0505ff8031c938
BLAKE2b-256 c7b0e3c96ae6c6954fa4cb0e032e2319d8171e73834f04f507bced89620db35d

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e6dd5a66c32ba0e1c075f4ac65294edfbcf1ef687ce5f3c8f4d86190e91ba0e1
MD5 48b05cc68ee420ac2f02252c41a4b771
BLAKE2b-256 5c15cdcbe0c676da837dd9b41cbde81458b2dde8c104ad96883cb47002cc17d7

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ebb8e9e1a4e0274a3bb20d407074bea49e4b4c9fc2dadaedf8a501169f26ec26
MD5 af66a237d54c78d2767e932228c1b7fb
BLAKE2b-256 09e39df962fc3287c207a136ab9c663823174a7a5fc3056383b6caf33b51d211

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7ef844723a94e8dd6b2a836cbae4ea6c9c6d46dfb625fd98ceb2e23d7c88c637
MD5 19986e550dcee080cec5ca817f1b97e4
BLAKE2b-256 1b0100c830ccc88686df8d1284a5ff3d943a17fba75ae1a244520983589f7574

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 00c75aa84efe3c64fa808a20f9029be36e0081305ce5d7b82181e576b73d1532
MD5 e1b805f07fb758874ac6833c3895395f
BLAKE2b-256 1afbdad1905b58b2a2e07d7084ee7f87e6ff0ad7e05e7f231fa67b6c8a9d7c03

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 77d9ab4333a671a8d9c99d3b66d88aab2d3a6af2b61bb82cb4811367ce00a77e
MD5 dd9f88c7b9c1711e7a70134eb89da0e0
BLAKE2b-256 343ce2b2c690abab999741359c3fce40cc46c800de0fdb3ea482036797d55a7e

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cb0702d93dd73ee5814b12a7f72da1e33ca2a8e7003e325402070950628c835f
MD5 bae300aab767592469895b99f4342383
BLAKE2b-256 62fb3357d486914ca0091b98bca854ab74c45e8bdf111575d65a8f731d2dabfc

See more details on using hashes here.

File details

Details for the file macromol_voxelize-0.4.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for macromol_voxelize-0.4.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2820c0164a1fbcf23ff5eb56af7f1ce07e66898345ad5f6a58495fd11d188edb
MD5 9fa08fe22a655467c5c97132761e7cfa
BLAKE2b-256 5f54557b7bf2ecba4a92582699dcb629b7908a05e1e901b18bd98b7e855e095e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page