Skip to main content

MAGinator: Abundance, strain, and functional profiling of MAGs

Project description

Project Status: Active - The project has reached a stable, usable state and is being actively developed.

MAGinator

Combining the strengths of contig and gene based methods to provide:

  • Accurate abundances of species using de novo signature genes
    • MAGinator uses a statistical model to find the best genes for calculating accurate abundances
  • SNV-level resolution phylogenetic trees based on signature genes
    • MAGinator creates a phylogenetic tree for each species so you can associate your metadata with subspecies/strain level differences
  • Connect accessory genome to the species annotation by getting a taxonomic scope for gene clusters
    • MAGinator clusters all ORFs into gene clusters and for each gene cluster you will know which taxonomic level it is specific to
  • Improve your functional annotation by grouping your genes in synteny clusters based on genomic adjacency
    • MAGinator clusters gene clusters into synteny clusters - Syntenic genes are usually part of the same pathway or have similar functions

Installation

All you need for running MAGinator is snakemake and mamba. Other dependencies will be installed by snakemake automatically.

conda create -n maginator -c bioconda -c conda-forge snakemake mamba
conda activate maginator
pip install maginator

Furthermore, MAGinator also needs the GTDB-tk database version R207_v2 downloaded. If you don't already have it, you can run the following:

wget https://data.gtdb.ecogenomic.org/releases/latest/auxillary_files/gtdbtk_v2_data.tar.gz
tar xvzf gtdbtk_v2_data.tar.gz

Usage

MAGinator needs 3 input files:

  • The clusters.tsv files from VAMB
  • A fasta file with sequences of all contigs, with unique names
  • A comma-separated file giving the position of the fastq files with your sequencing reads formatted as: SampleName,PathToForwardReads,PathToReverseReads

Run MAGinator:

maginator -v vamb_clusters.tsv -r reads.csv -c contigs.fasta -o my_output -g "/path/to/GTDB-Tk/database/release207_v2/"

Run on a compute cluster

MAGinator can run on compute clusters using qsub (torque), sbatch (slurm), or drmaa structures. The --cluster argument toggles the type of compute cluster infrastructure. The --cluster_info argument toggles the information given to the submission command, and it has to contain the following keywords {cores}, {memory}, {runtime}, which are used to forward resource information to the cluster.

A qsub MAGinator can for example be run with the following command (... indicates required arguments, see above):

maginator ... --cluster qsub --cluster_info "-l nodes=1:ppn={cores}:thinnode,mem={memory}gb,walltime={runtime}"

MAGinator workflow

This is what MAGinator does with your input (if you want to see all parameters run maginator --help):

  • Filter bins by size
    • Use --binsize to control the cutoff
  • Run GTDB-tk to taxonomically annotate bins and call open reading frames (ORFs)
  • Group your VAMB clusters into metagenomic species (MGS) based on the taxonomic annotation. (Unannotated VAMB clusters are kept in the pipeline, but left unchanged)
    • Use --no_mgs to disable this
    • Use --annotation_prevalence to change how prevalent an annotation has to be in a VAMB cluster to call taxonomic consensus
  • Cluster your ORFs into gene clusters to get a non-redundant gene catalogue
    • Use --clustering_min_seq_id to toggle the clustering identity
    • Use --clustering_coverage to toggle the clustering coverage
    • Use --clustering_type to toggle whether to cluster on amino acid or nucleotide level
  • Map reads to the non-redundant gene catalogue and create a matrix with gene counts for each sample
  • Pick non-redundant genes that are only found in one MGS each
  • Fit signature gene model and use the resulting signature genes to get the abundance of each MGS
  • Prepare for generation of phylogenies for each MGS by finding outgroups and marker genes which will be used for rooting the phylogenies
  • Use the read mappings to collect SNV information for each signature gene and marker gene for each sample
  • Align signature and marker genes, concatenate alignments and infer phylogenetic trees for each MGS
    • Use --phylo to toggle whether use fasttree (fast, approximate) or iqtree (slow, precise) to infer phylogenies
  • Infer the taxonomic scope of each gene cluster. That is, at what taxonomic level are genes from a given gene cluster found in
    • Use --tax_scope_threshold to toggle the threshold for how to find the taxonomic scope consensus
  • Cluster gene clusters into synteny clusters based on how often they are found adjacent on contigs

Output

  • abundance/
    • abundance_phyloseq.RData - Phyloseq object for R, with abundance and taxonomic data
  • clusters/
    • /.fa - Fasta files with nucleotide sequence of bins
  • genes/
    • all_genes.faa - Amino acid sequences of all ORFs
    • all_genes.fna - Nucletotide sequences of all ORFs
    • all_genes_nonredundant.fasta - Nucleotide sequences of gene cluster representatives
    • all_genes_cluster.tsv - Gene clusters
    • matrix/
      • gene_count_matrix.tsv - Read count for each gene cluster for each sample
    • synteny/ - Intermediate files for synteny clustering of gene clusters
  • gtdbtk/
    • / - GTDB-tk taxonomic annotation for each VAMB cluster
  • logs/ - Log files
  • mapped_reads/
    • bams/ - Bam files for mapping reads to gene clusters
  • phylo/
    • alignments/ - Alignments for each signature gene
    • cluster_alignments/ - Concatenated alignments for each MGS
    • pileup/ - SNV information for each MGS and each sample
    • trees/ - Phylogenetic trees for each MGS
    • stats.tab - Mapping information such as non-N fraction, number of signature genes and marker genes, read depth, and number of bases not reaching allele frequency cutoff
    • stats_genes.tab - Same as above but the information is split per gene
  • signature_genes/ - R data files with signature gene optimization
  • tabs/
    • gene_cluster_bins.tab - Table listing which bins each gene cluster was found in
    • gene_cluster_tax_scope.tab - Table listing the taxonomic scope of each gene cluster
    • metagenomicspecies.tab - Table listing which, if any, clusters where merged in MGS and the taxonomy of those
    • signature_genes_cluster.tsv - Table with the signature genes for each MGS/cluster
    • synteny_clusters.tab - Table listing the synteny cluster association for the gene clusters. Gene clusters from the same synteny cluster are genomically adjacent.
    • tax_matrix.tsv - Table with taxonomy information for MGS

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

maginator-0.1.13.tar.gz (43.9 kB view hashes)

Uploaded Source

Built Distribution

maginator-0.1.13-py3.10.egg (83.4 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page