Skip to main content

A C++/Python library to manipulate sheet music data

Project description

Maialib - Music Analysis Library {#mainpage}

Maialib CI/CD

This library is a multiplatform set of musical tools that enable musical score analisys and composition in a easy and fast way.
The project core was wrote in C++17, but it also has a Python wrapper that allows a greater number of people (ie musicians not trained in IT) to also have in their hands the same power and musical tools available in maialib.

Advantages

  • Easy to use to musicians and musical researchers
  • High computer perfomance and fast calculations
  • Read and write musical scores (MusicXML file format)

Get Python Package

pip install maialib

Or, if you have a older maialib version installed on your system, please get the latest version running: pip install maialib --upgrade

Get Started

You can easily import your sheet music (*.xml file) to Python environment using:

import maialib as ml

myScore = ml.Score('./Beethoven/Symphony_9th.xml')

Now you can explore some maialib features like:

  • Find musical patterns
  • Write your own scores from your custom algorithms
  • Analyse scores in a musical statistical data perspective
  • And much more!

Frequent Asked Questions

1) Where can I find the XML file of a specific musical score?

To import musical scores the file extensions must be: *.xml, *.mxl or *.musicxml
You can easily export your music files to these file formats above from score editors, like:

  • MuseScore (free!)
  • Sibelius
  • Finale
  • Others

Many MusicXML files are avaliable for free in the internet for download.

2) What can I do if I don't have a *.xml file of my target music?

  • First, make shure and look at different websites and online repositories trying to find the *.xml file
  • You can find on the internet the desired MIDI file and import it in a score editor (like MuseScore, Sibelius, Finale, etc.) and then export the MusicXML file from it
  • You can use scan the sheet music paper and get a PDF version of it, so:
    • You can use a OMR software to try to convert the PDF file into a *.xml file
    • You can pay for other people to type manually note-by-note the PDF into a musical software (link MuseScore, Sibelius, Finale, etc.)
  • You can type manually note-by-note the music paper into a musical software (link MuseScore, Sibelius, Finale, etc.)

Documentation (in development)

This project have 2 documentation levels. One for each user type:

  • Level 1 - User documentation: for musicians, musical researchers and non-professional IT people (help me to do that!)
  • Level 2 - Developer documentation: A deeper information for professional C++ programmers (Doxygen)

Level 1: Python Tutorial

You can explore maialib features looking at python-tutorial folder (link here).
There you will learn how to use and mix maialib classes and functions to reach your musical goals If you are starting, please check these 3 basic maialib Python tutorials:

Level 2: Developer Documentation

Maialib Documentation WebSite

VS Code Users

  • You can write your Python scripts using *.py or *.ipynb file extensions.
  • If you decide to use *.ipynb extension, make shure to install nbformat Python package to enable visualize maialib graphs on VS Code editor. To do that: pip install nbformat --upgrade

Would you like to improve any maialib function?

Are you a C++ developer?

Requirements to build from C++ sources:

  • C++17 compatible compiler
  • CMake 3.26
  • Python 3.8
  • Make
  • Doxygen (Optional: To build documentation)
  • Buildcache (Optional: To accelerate the build process)
  • CppCheck (Optional: C++ Static Analyzer)

Are you a Python developer?

Python Dev-only dependencies

pip install pathlib
pip install cpplint
pip install wheel
pip install mypy

# To generate Python stubs
pip install pybind11-stubgen
# Mac users: May be you have to add the coverage and pybind11-stubgen on your `PATH` - /etc/paths

pybind11_mkdoc (github)
sudo apt install clang (pybind11_mkdoc dependency) - Linux/Mac Only

Tested Environments

Operational System Compilers
Windows 10 x64 Clang 18.0
Linux Ubuntu 20.04 GCC 9.3
Apple OSX 10.15 XCode 11.5 (Command Line Tools)

Quick Start

Build Python module from C++ source

Open a terminal (or CMD in Windows), enter inside of the maialib folder.
Type: make to build the Python module
When the build process finishes, type: make install
Done!

Known issues to build from source

All Platforms

  • Multiple Python versions installed, like: Official Python, Microsoft Python, MSYS2 Python and others can direct the build system to choose a wrong version to build and install the library.
    To check all Python versions installed on your system, open the Terminal (or CMD on Windows) and type: - Linux or Mac: - which python - which python3 - Windows: - where.exe python - where.exe python3
  • If maialib Python stubs and autocomplete are not working good on VS Code. Run: "Pylance: Clear Persisted Indices"

Windows-Only

  • Disable your antivirus or create a exception (CMake permissions)

Contact

Nycholas Maia - nyckmaia@gmail.com

Contributing

  • Fork this project
  • Make your custumizations and improvments
  • Please, send me a pull request

License

Maialib is licensed under GPLv3 License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

maialib-1.9.2-pp310-pypy310_pp73-win_amd64.whl (2.6 MB view details)

Uploaded PyPyWindows x86-64

maialib-1.9.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

maialib-1.9.2-pp39-pypy39_pp73-win_amd64.whl (2.6 MB view details)

Uploaded PyPyWindows x86-64

maialib-1.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

maialib-1.9.2-pp38-pypy38_pp73-win_amd64.whl (2.6 MB view details)

Uploaded PyPyWindows x86-64

maialib-1.9.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

maialib-1.9.2-cp312-cp312-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.12Windows x86-64

maialib-1.9.2-cp312-cp312-musllinux_1_2_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

maialib-1.9.2-cp312-cp312-musllinux_1_2_i686.whl (4.3 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ i686

maialib-1.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

maialib-1.9.2-cp312-cp312-macosx_10_15_universal2.whl (4.5 MB view details)

Uploaded CPython 3.12macOS 10.15+ universal2 (ARM64, x86-64)

maialib-1.9.2-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11Windows x86-64

maialib-1.9.2-cp311-cp311-musllinux_1_2_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

maialib-1.9.2-cp311-cp311-musllinux_1_2_i686.whl (4.3 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ i686

maialib-1.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

maialib-1.9.2-cp311-cp311-macosx_10_15_universal2.whl (4.5 MB view details)

Uploaded CPython 3.11macOS 10.15+ universal2 (ARM64, x86-64)

maialib-1.9.2-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10Windows x86-64

maialib-1.9.2-cp310-cp310-musllinux_1_2_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

maialib-1.9.2-cp310-cp310-musllinux_1_2_i686.whl (4.3 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ i686

maialib-1.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

maialib-1.9.2-cp310-cp310-macosx_10_15_universal2.whl (4.5 MB view details)

Uploaded CPython 3.10macOS 10.15+ universal2 (ARM64, x86-64)

maialib-1.9.2-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9Windows x86-64

maialib-1.9.2-cp39-cp39-musllinux_1_2_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

maialib-1.9.2-cp39-cp39-musllinux_1_2_i686.whl (4.3 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ i686

maialib-1.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

maialib-1.9.2-cp39-cp39-macosx_10_15_universal2.whl (4.5 MB view details)

Uploaded CPython 3.9macOS 10.15+ universal2 (ARM64, x86-64)

maialib-1.9.2-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8Windows x86-64

maialib-1.9.2-cp38-cp38-musllinux_1_2_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ x86-64

maialib-1.9.2-cp38-cp38-musllinux_1_2_i686.whl (4.3 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ i686

maialib-1.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

maialib-1.9.2-cp38-cp38-macosx_10_15_universal2.whl (4.5 MB view details)

Uploaded CPython 3.8macOS 10.15+ universal2 (ARM64, x86-64)

File details

Details for the file maialib-1.9.2-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 9a100d29abaf5008204530aca64a560bb97ca1f29d14a11bd198711b034701fc
MD5 56c04505c772810d48ccb67b5d3ca645
BLAKE2b-256 f340b31d1084f788e1ad35c953914c4754211ac423b4bb5f870ca3aa1832cfd3

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 917c8533ec4ae160de7ecf251a167366f33e12ebd08905836b1487d102e16d46
MD5 f9d949eeba8bfc4a483d1942d7db9aff
BLAKE2b-256 296d51ffdb846b1b4090d1040700658c84400ca0f434e6c698a8c9589251264e

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 44a888dec5864ee1e96efd8ee127ad936d7787864250e80aaf9badd8b11006c6
MD5 bf6a248242351e447198d6b55a70e30a
BLAKE2b-256 933059c05ae6cc39d166a9bf1dcbd50f704199e645cc1c1855ce22ab9659ac82

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 61c6cca3704d22fb2a276a25989a6015dcb5dc02819fae51078883df5441eeaa
MD5 882595b25609c30737861d9a36f8885b
BLAKE2b-256 3c2eb245cc491bdd88963792e982d207c1a5f2c81eac417f6cda4f166885933d

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 01db2034db128b03e243bcfb3d775b384e9e2ae83ff1727c1169b0ac147b0891
MD5 1308ed503322934f3467412d4c077d3d
BLAKE2b-256 fc218fb868d61681eb088e5a69992f0e329081b8f15c4dbdaff48a9a1a8ef0c0

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 78ada92a0ae7c262db9887785a9891a46020d91ac36c91a35c9e6ff4da958779
MD5 c175e4171947d7d5e1602708d1b854ba
BLAKE2b-256 ce6e4f0ae61e702b012119ab2ef409555df8a92b5c206ea8e18ab9f95a6dff3b

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: maialib-1.9.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for maialib-1.9.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 64b22d89d12579f02e18db3924ce097becb48f9c6e1a2f48658f02d982b7b1d9
MD5 e63acef767cf7b3e7831e3a7bfef0f18
BLAKE2b-256 97c84acf8e530337067308186472ce7912c89d4b91c323db42c55dcc771c125a

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5bfe8102049df893628bf869838d61f29e90e9713be94b79be8be71f06af15f9
MD5 36ac031769f768c3031994255d0756ca
BLAKE2b-256 876e0d3e2c6275e01bfbe3479715ff8243e1dc6d5dbae8411924782c79b71e33

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1bf6e3dced34d19a9db238abab587df4a4c9d8a40ed7cfb8a396b409b061b5de
MD5 74a7c9f440b78d285e7cfaae2a344c1b
BLAKE2b-256 2e0c9d15e7f0dd09bcee486557dcfaed59b9b3b98b47ef922aa6fb8876ebd658

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2378a8bc9e3d4058fd215fc3070415abf642b6dee3e6e6c0db0cb52707b4164f
MD5 68ecada91de11274b312e5e9e01c4bf5
BLAKE2b-256 0791f1a396e3ed8660e76d31186131346ee7b09ebbbc88500152be8d7b52752f

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp312-cp312-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-cp312-cp312-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 b64b9ed34fbc3f36cd45d4a19b0afc78cd4695287c58168973c901f033dd1147
MD5 01d9e4e59a5172d0eef729ef4e443960
BLAKE2b-256 ef368d3321fc676e5275ea63f054a6c9a908ca5bbc7700992cbac213ce74c0a6

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: maialib-1.9.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for maialib-1.9.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cb957deef1f74c822ac789437bceabee5a368e89780a7359195f6addb7864a0f
MD5 a1b9d2c6957bd4b42c583599d9293e02
BLAKE2b-256 ea08c17fb8d1c7b22b4ca18c1af4537843dc37ede3c66e817b4434a874292cf6

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a16fe2909fe3bcd275360a3d71de803d5cee4c8f03fc9a0b12a3df97adbf384e
MD5 19ba49d87b6e78123fa9f947ce8a8b56
BLAKE2b-256 5e94e477e35686e2410b1be87e5beb701de74456452ee1b8330d4e57152991df

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 9635897cbb9c0e4989951b0d7dcb06f5cac7fd5050ee9bbd0ed97f1b41205d62
MD5 09988a422e2e8c1d450787a553c84ca8
BLAKE2b-256 c1522305a8b0f33a173fbe20bf4187cecaac2101313ec863965fecd420b0ab21

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 963c388860764cadd937b24dbf952c0e1b8102bbfd2df8a3f7e564e3930162c8
MD5 e1bd4e17d18545229d0a852a5c3ec885
BLAKE2b-256 5b0ba9e574f73648648dd226972081a7c52095ee141bb99f25824acfc860ddb1

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp311-cp311-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-cp311-cp311-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 a1f987c0614002e7d2d57292fbcc3d9624597c96404d3afb806a46634898c82a
MD5 e8ab3050d31d8dfd0488ef50a9a39600
BLAKE2b-256 7fbdd725a8f55c03e51a928ad699f82876d167d229749fa3e328e4e17db91529

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: maialib-1.9.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for maialib-1.9.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 da8ab288a49c1d430c3f9afc194590a31c9bd26e0139812cd262d20f5f2527ce
MD5 ce62282a9202a2400de4157339965800
BLAKE2b-256 d4509b5e7f68155e51e413e164a25f572dbc6404c5b9748dfd40ddf9e6c03d2f

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5467037d91e979d6e44b56161abd0b7cce85cbfb6bca8aefe6876707db407cda
MD5 00f5220bf0251332606997b49caf7edb
BLAKE2b-256 3c3fdd2a9a26f32928061efb0d5d620de97d3df491b9cfa4670650a23478ca5a

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 797cbd107cdd25c1fdd76a9b4cdfca99d3d3f9405daf717ba43d7ebdb879b9ef
MD5 7cf7f6c7deef41a97bed56d53d0b474d
BLAKE2b-256 6298100237344214ff9d4d460543510c0922890cf16bb53917133add41fbeefd

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7017d5da8f9541885194016a7fc3ccb72698e171615a87d5edccd1c54ce0b87b
MD5 0b4747c902d9cb55386ca667fe9600a8
BLAKE2b-256 f9b09024d28509cf0a2366df9e4672706ca7c6fcdf8bf1801746267a7ef3a0af

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp310-cp310-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-cp310-cp310-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 00d7fff043621da0dc05c6070af3a4ff5b9e67f40d47cfc3a2dd1a680ff79215
MD5 f9395bf05490cdf1481be27dc0d6c5ec
BLAKE2b-256 9a99a462bf18152c1bca3c1fbbf16e932ad0ba73bd57ecdb4fe065b2cfec74c6

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: maialib-1.9.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for maialib-1.9.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5fb20f0edc3f4d018210a3f43ea05d935f6314cd9f56fd16dca09b8005effe45
MD5 ee7870c17df25f8dfd292f5c48d6588b
BLAKE2b-256 782d8017ea0ae08f82adc9fc4b0f5196ff92f73035221bd091dbd2b48b4164d3

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4c0e8ead8fcade3e02d1db7c5bbcd241a403e8f9f67f92e2afdf11f0172fa1b3
MD5 811fed5bb930ce0ff4fb37a3b8a2af0f
BLAKE2b-256 58a7077faa7cca804f72eda9ab6d7650422d9d49b3213802cd657d973a65a432

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 bb83f888320f405c9617ae4fa0c32bc5f41b3ff5734dbffb8539abf7cdc4493a
MD5 ea49216546a540b8824bced5a5bd71bd
BLAKE2b-256 8b6895a2b4aa274ffa9fc3d4f33cd1de01685efe8cedc67e20e03005707dc70d

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1d87b0d6936e2a33e4263bc7ff6c4dd70b8d2c92dfba47427da4051a4510c79c
MD5 756d6c423cfd8ee655c4ade27d6facb6
BLAKE2b-256 07317a09a150c56527d195de9485932290da69f8249d27931fcc34ca2d8709a4

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp39-cp39-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-cp39-cp39-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 700cdee0872bbb603df003ae5e54961e2b8b7f18295940f0c2a36dbe22f11e9f
MD5 28f78f0d2124d4bfe3e2d303bb109842
BLAKE2b-256 fbbc179190a80673f4ae05e1648fb13474b0558d20ac2f7f8f89a089b3832149

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: maialib-1.9.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for maialib-1.9.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f0d0fc43dffdb707ccf26d12be2078b8fbd35f9e1d8aacf168f54eb500f1a5a9
MD5 36a84105ffd3af226f018a638ebbd44a
BLAKE2b-256 8ab2d682179645cb0946312b656aaf3749d3c39cbfc9c184c40e04d3cde39317

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a40b49443490cd01a5491d1473a4e1f7eb034c96e3fc394a87d72f901cbbf2a5
MD5 e761b14f839c69a16b9dadca559e08b6
BLAKE2b-256 e80e34e42cc8b34e861e2e3d25ac60c78ad64cc9c764f1e37bf90a0e9e1c7600

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 7a496a3dba7780a02d19a75dcd7bbdb3a66621d247bd1c78377ca4a113a00293
MD5 c21dece64b24ee6bd3628335e6f936c0
BLAKE2b-256 941626ff446b0a68bb49a3bdd104404ff19f46355cc0d473ed7d652cdbb29127

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cd9cb9e9d184b0798b4c07aa7b7c3ba3a937190e49fbe5ac21297ef9de1add1b
MD5 f75952e40f26047f0e3f73163307cc5f
BLAKE2b-256 34dd02744b760ae6cffd1c9a7fb478e1e9314e10c76a7f74e0149c21343e43e6

See more details on using hashes here.

File details

Details for the file maialib-1.9.2-cp38-cp38-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for maialib-1.9.2-cp38-cp38-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 d7de558d4bb9856fb712358c2589aa6971f6398555a962180c3c4c95bd935a3b
MD5 5cbd532b32b506fbb6cf2f37d355f285
BLAKE2b-256 35526f47f9fd167dbd15d3767ce0d016acc4470911c6b7da92d09cef3ed1d193

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page