Skip to main content

No project description provided

Project description

malib

A few utilities that I find useful.

Cached stubs

Create pytest fixtures to cache the output of functions. See the blog post for more details.

# in your conftest.py

from os import getenv
from malib import cached_stubs

from my_module import network_function, a, b

# default values for configuration
cached_stubs.RECORD = getenv("RECORD") == "1" 
cached_stubs.PATH = "tests/cached_stubs"

# this patches my_module.network_function by default
fixture = cached_stubs.create(network_function, ignore_args=["api_key"])

# this will patch other_module.network_function too
fixture = cached_stubs.create(network_function, modules=["my_module, ""other_module"])

# to combine two fixtures in one
fixture_a = cached_stubs.create(a)
fixture_b = cached_stubs.create(b)

@pytest.fixture
def fixture_ab(fixture_a, fixture_b):
    pass

RateLimiter

from malib import RateLimiter

# call a function at most 10 times per minute
rl = RateLimiter(max_calls=10, period=60) 
# call .wait_and_call() every time before calling the function
rl.wait_and_call()
# approximate probability that the rate limit is exceeded within 1 hour
# when events are Poisson distributed with rate 3 per minute
print(rl.prob_exceeded_poisson(mu=3 / 60, duration=3600))
# 0.09958253462915534

ttl_cache

from malib import ttl_cache
from time import sleep


@ttl_cache(ttl=1)
def f():
    print("computing")
    return "result"


print(f()) # prints "computing"
print(f()) # cached
sleep(1)
print(f()) # prints "computing"

Exact cover

Code inspired by this blog post.

from malib import exact_cover

piece_to_constraints = {"A": {1}, "B": {2, 4}, "C": {2, 3, 5}, "D": {3, 5}}
next(exact_cover(piece_to_constraints))
# ("A", "B", "D")

PyTorch bivariate normal cdf

Provide two functions to compute a differentiable cumulative distribution function of a bivariate normal distribution.

Requires scipy and pytorch.

import torch
from malib import standard_bivariate_normal_cdf, bivariate_normal_cdf

# standard bivariate normal cdf
x = torch.tensor([0.0, 0.0], requires_grad=True)
cor = 0.5
y = standard_bivariate_normal_cdf(x, cor)
print(y)
# tensor(0.3333, grad_fn=<StandardBivariateNormalCDFBackward>)
y.backward()
print(x.grad)
# tensor([0.1995, 0.1995])

# bivariate_normal_cdf
x = torch.tensor([0.0, 0.0], requires_grad=True)
mean = torch.tensor([0.0, 0.0])
cov = torch.tensor([[1.0, 0.5], [0.5, 1.0]])
y = bivariate_normal_cdf(x, mean, cov)
print(y)
# tensor(0.3333, grad_fn=<BivariateNormalCDFBackward>)
y.backward()
print(x.grad)
# tensor([0.1995, 0.1995])

PyTorch interpolation

import torch
from malib import interp

x = torch.tensor([0.0, 1.0, 2.0])
y = torch.tensor([0.0, 1.0, 4.0])
interp(torch.tensor([0.5, 1.5]), x, y)
# tensor([0.5000, 2.5000])

Async to sync generator

The sync_gen function allows you to convert an asynchronous generator into a synchronous one. This can be useful when you want to use async code in a synchronous context.

import asyncio
from malib import sync_gen

async def async_generator():
    for i in range(5):
        await asyncio.sleep(0.1)
        yield i

# Convert async generator to sync generator
sync_generator = sync_gen(async_generator())

# Use the sync generator in a regular for loop
for item in sync_generator:
    print(item)

Confidence interval

from malib import clopper_pearson_confidence_interval

print(clopper_pearson_confidence_interval(100, 1000, alpha=0.05))
# (0.08210533435557998, 0.12028793651869261)

Testing

poetry install --with dev
pytest

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

malib-0.11.4.tar.gz (6.2 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

malib-0.11.4-py3-none-any.whl (8.6 kB view details)

Uploaded Python 3

File details

Details for the file malib-0.11.4.tar.gz.

File metadata

  • Download URL: malib-0.11.4.tar.gz
  • Upload date:
  • Size: 6.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.6

File hashes

Hashes for malib-0.11.4.tar.gz
Algorithm Hash digest
SHA256 f5bf564d038ed1544575d7fd9a08a2a4cc58e149a3a148a8cc40a3722b51d114
MD5 aedd7d881f919c9c39b4869804a2813f
BLAKE2b-256 76ee95e177568b291e9e31fa8ff1488151ff8c868ac5a6c04863ff46ce9ae2ac

See more details on using hashes here.

File details

Details for the file malib-0.11.4-py3-none-any.whl.

File metadata

  • Download URL: malib-0.11.4-py3-none-any.whl
  • Upload date:
  • Size: 8.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.6

File hashes

Hashes for malib-0.11.4-py3-none-any.whl
Algorithm Hash digest
SHA256 cab525346aca4dc4838c6d25374a0d03c0c3ee2c88e25db8e86bb51614c960bf
MD5 300d7d45b7ada716e6fdd251b0eb901b
BLAKE2b-256 69dad3bbf476bd8510cd87f6c5dc6206a98cac9e0822638b6f041989ebc778af

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page