Skip to main content

No project description provided

Project description

malib

A few utilities that I find useful.

RateLimiter

from malib import RateLimiter

# call a function at most 10 times per minute
rl = RateLimiter(max_calls=10, period=60) 
# call .wait() every time before calling the function
rl.wait()

ttl_cache

from malib import ttl_cache
from time import sleep


@ttl_cache(ttl=1)
def f():
    print("computing")
    return "result"


print(f()) # prints "computing"
print(f()) # cached
sleep(1)
print(f()) # prints "computing"

Exact cover

Code inspired by this blog post.

from malib import exact_cover

piece_to_constraints = {"A": {1}, "B": {2, 4}, "C": {2, 3, 5}, "D": {3, 5}}
next(exact_cover(piece_to_constraints))
# ("A", "B", "D")

PyTorch bivariate normal cdf

Provide two functions to compute a differentiable cumulative distribution function of a bivariate normal distribution.

Requires scipy and pytorch.

import torch
from malib import standard_bivariate_normal_cdf, bivariate_normal_cdf

# standard bivariate normal cdf
x = torch.tensor([0.0, 0.0], requires_grad=True)
cor = 0.5
y = standard_bivariate_normal_cdf(x, cor)
print(y)
# tensor(0.3333, grad_fn=<StandardBivariateNormalCDFBackward>)
y.backward()
print(x.grad)
# tensor([0.1995, 0.1995])

# bivariate_normal_cdf
x = torch.tensor([0.0, 0.0], requires_grad=True)
mean = torch.tensor([0.0, 0.0])
cov = torch.tensor([[1.0, 0.5], [0.5, 1.0]])
y = bivariate_normal_cdf(x, mean, cov)
print(y)
# tensor(0.3333, grad_fn=<BivariateNormalCDFBackward>)
y.backward()
print(x.grad)
# tensor([0.1995, 0.1995])

PyTorch interpolation

import torch
from malib import interp

x = torch.tensor([0.0, 1.0, 2.0])
y = torch.tensor([0.0, 1.0, 4.0])
interp(torch.tensor([0.5, 1.5]), x, y)
# tensor([0.5000, 2.5000])

Async to sync generator

The sync_gen function allows you to convert an asynchronous generator into a synchronous one. This can be useful when you want to use async code in a synchronous context.

import asyncio
from malib import sync_gen

async def async_generator():
    for i in range(5):
        await asyncio.sleep(0.1)
        yield i

# Convert async generator to sync generator
sync_generator = sync_gen(async_generator())

# Use the sync generator in a regular for loop
for item in sync_generator:
    print(item)

Testing

poetry install --with dev
pytest

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

malib-0.6.0.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

malib-0.6.0-py3-none-any.whl (5.9 kB view details)

Uploaded Python 3

File details

Details for the file malib-0.6.0.tar.gz.

File metadata

  • Download URL: malib-0.6.0.tar.gz
  • Upload date:
  • Size: 4.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.5

File hashes

Hashes for malib-0.6.0.tar.gz
Algorithm Hash digest
SHA256 f0ac52a7a96d8c4965467d28dc4cfa711e5ae16eab47675af9c3ba704ee5bd8c
MD5 eb25f23db6b8b68afdd24ca0880bf250
BLAKE2b-256 6453e56f185619f1bdfbe13a3faca3b254106f5790e16584635375544d67d32e

See more details on using hashes here.

File details

Details for the file malib-0.6.0-py3-none-any.whl.

File metadata

  • Download URL: malib-0.6.0-py3-none-any.whl
  • Upload date:
  • Size: 5.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.5

File hashes

Hashes for malib-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ffa0cf4cd86ba267323e238358fbea2d6ac5e5b4574669b4a39d217f5109cb88
MD5 a9177c465ca343f719a9759914d668ab
BLAKE2b-256 79548fa46448309704165c97944f280ddb75565083978b4b4f69232769bcd250

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page