No project description provided
Project description
malib
A few utilities that I find useful.
RateLimiter
from malib import RateLimiter
# call a function at most 10 times per minute
rl = RateLimiter(max_calls=10, period=60)
# call .wait() every time before calling the function
rl.wait()
ttl_cache
from malib import ttl_cache
from time import sleep
@ttl_cache(ttl=1)
def f():
print("computing")
return "result"
print(f()) # prints "computing"
print(f()) # cached
sleep(1)
print(f()) # prints "computing"
Exact cover
Code inspired by this blog post.
from malib import exact_cover
piece_to_constraints = {"A": {1}, "B": {2, 4}, "C": {2, 3, 5}, "D": {3, 5}}
next(exact_cover(piece_to_constraints))
# ("A", "B", "D")
PyTorch bivariate normal cdf
Provide two functions to compute a differentiable cumulative distribution function of a bivariate normal distribution.
Requires scipy and pytorch.
import torch
from malib import standard_bivariate_normal_cdf, bivariate_normal_cdf
# standard bivariate normal cdf
x = torch.tensor([0.0, 0.0], requires_grad=True)
cor = 0.5
y = standard_bivariate_normal_cdf(x, cor)
print(y)
# tensor(0.3333, grad_fn=<StandardBivariateNormalCDFBackward>)
y.backward()
print(x.grad)
# tensor([0.1995, 0.1995])
# bivariate_normal_cdf
x = torch.tensor([0.0, 0.0], requires_grad=True)
mean = torch.tensor([0.0, 0.0])
cov = torch.tensor([[1.0, 0.5], [0.5, 1.0]])
y = bivariate_normal_cdf(x, mean, cov)
print(y)
# tensor(0.3333, grad_fn=<BivariateNormalCDFBackward>)
y.backward()
print(x.grad)
# tensor([0.1995, 0.1995])
PyTorch interpolation
import torch
from malib import interp
x = torch.tensor([0.0, 1.0, 2.0])
y = torch.tensor([0.0, 1.0, 4.0])
interp(torch.tensor([0.5, 1.5]), x, y)
# tensor([0.5000, 2.5000])
Async to sync generator
The sync_gen
function allows you to convert an asynchronous generator into a synchronous one. This can be useful when you want to use async code in a synchronous context.
import asyncio
from malib import sync_gen
async def async_generator():
for i in range(5):
await asyncio.sleep(0.1)
yield i
# Convert async generator to sync generator
sync_generator = sync_gen(async_generator())
# Use the sync generator in a regular for loop
for item in sync_generator:
print(item)
Testing
poetry install --with dev
pytest
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
malib-0.7.0.tar.gz
(4.5 kB
view details)
Built Distribution
malib-0.7.0-py3-none-any.whl
(6.0 kB
view details)
File details
Details for the file malib-0.7.0.tar.gz
.
File metadata
- Download URL: malib-0.7.0.tar.gz
- Upload date:
- Size: 4.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 214cb1af499a582be3b55ec7755588eb5ccedbd9c67ff95909a4050daec5b939 |
|
MD5 | a6d7fdb8a50b05ae4f55ed6b0d0b269b |
|
BLAKE2b-256 | c3a46d92cb9cb5920faaf82fc684dc424f86f1ab2cdff5f3961f949ec2ebb187 |
File details
Details for the file malib-0.7.0-py3-none-any.whl
.
File metadata
- Download URL: malib-0.7.0-py3-none-any.whl
- Upload date:
- Size: 6.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d8dbf69c52b81b1393b4d102a3a99855c8218e097d37857320b7957631373c9b |
|
MD5 | a65fa73704b569343dd52aff036f1e32 |
|
BLAKE2b-256 | a6868515d7c81f63400044cab2f107c218d8969d43f293a83d728f193a1f3278 |