Skip to main content

No project description provided

Project description

malib

A few utilities that I find useful.

RateLimiter

from malib import RateLimiter

# call a function at most 10 times per minute
rl = RateLimiter(max_calls=10, period=60) 
# call .wait() every time before calling the function
rl.wait()

ttl_cache

from malib import ttl_cache
from time import sleep


@ttl_cache(ttl=1)
def f():
    print("computing")
    return "result"


print(f()) # prints "computing"
print(f()) # cached
sleep(1)
print(f()) # prints "computing"

Exact cover

Code inspired by this blog post.

from malib import exact_cover

piece_to_constraints = {"A": {1}, "B": {2, 4}, "C": {2, 3, 5}, "D": {3, 5}}
next(exact_cover(piece_to_constraints))
# ("A", "B", "D")

PyTorch bivariate normal cdf

Provide two functions to compute a differentiable cumulative distribution function of a bivariate normal distribution.

Requires scipy and pytorch.

import torch
from malib import standard_bivariate_normal_cdf, bivariate_normal_cdf

# standard bivariate normal cdf
x = torch.tensor([0.0, 0.0], requires_grad=True)
cor = 0.5
y = standard_bivariate_normal_cdf(x, cor)
print(y)
# tensor(0.3333, grad_fn=<StandardBivariateNormalCDFBackward>)
y.backward()
print(x.grad)
# tensor([0.1995, 0.1995])

# bivariate_normal_cdf
x = torch.tensor([0.0, 0.0], requires_grad=True)
mean = torch.tensor([0.0, 0.0])
cov = torch.tensor([[1.0, 0.5], [0.5, 1.0]])
y = bivariate_normal_cdf(x, mean, cov)
print(y)
# tensor(0.3333, grad_fn=<BivariateNormalCDFBackward>)
y.backward()
print(x.grad)
# tensor([0.1995, 0.1995])

PyTorch interpolation

import torch
from malib import interp

x = torch.tensor([0.0, 1.0, 2.0])
y = torch.tensor([0.0, 1.0, 4.0])
interp(torch.tensor([0.5, 1.5]), x, y)
# tensor([0.5000, 2.5000])

Async to sync generator

The sync_gen function allows you to convert an asynchronous generator into a synchronous one. This can be useful when you want to use async code in a synchronous context.

import asyncio
from malib import sync_gen

async def async_generator():
    for i in range(5):
        await asyncio.sleep(0.1)
        yield i

# Convert async generator to sync generator
sync_generator = sync_gen(async_generator())

# Use the sync generator in a regular for loop
for item in sync_generator:
    print(item)

Testing

poetry install --with dev
pytest

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

malib-0.7.0.tar.gz (4.5 kB view details)

Uploaded Source

Built Distribution

malib-0.7.0-py3-none-any.whl (6.0 kB view details)

Uploaded Python 3

File details

Details for the file malib-0.7.0.tar.gz.

File metadata

  • Download URL: malib-0.7.0.tar.gz
  • Upload date:
  • Size: 4.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.5

File hashes

Hashes for malib-0.7.0.tar.gz
Algorithm Hash digest
SHA256 214cb1af499a582be3b55ec7755588eb5ccedbd9c67ff95909a4050daec5b939
MD5 a6d7fdb8a50b05ae4f55ed6b0d0b269b
BLAKE2b-256 c3a46d92cb9cb5920faaf82fc684dc424f86f1ab2cdff5f3961f949ec2ebb187

See more details on using hashes here.

File details

Details for the file malib-0.7.0-py3-none-any.whl.

File metadata

  • Download URL: malib-0.7.0-py3-none-any.whl
  • Upload date:
  • Size: 6.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.5

File hashes

Hashes for malib-0.7.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d8dbf69c52b81b1393b4d102a3a99855c8218e097d37857320b7957631373c9b
MD5 a65fa73704b569343dd52aff036f1e32
BLAKE2b-256 a6868515d7c81f63400044cab2f107c218d8969d43f293a83d728f193a1f3278

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page