Skip to main content

Simulating generalized fading channels

Project description

Simulation of generalized fading channels in Python

Let’s say you have a complicated density function for which there is no implementation in Scipy, e.g., Yacoub’s Kappa-Mu. Don’t worry, maoud got you covered:

import numpy as np
import scipy.special as sps

def kappa_mu_pdf(x, kappa, mu):
    return (2.0 * mu * np.power(1.0 + kappa, (mu + 1.0) / 2.0) * np.power(x, mu)
            * np.exp(-mu * (1.0 + kappa) * x * x - mu * kappa + 2 * x * mu
            * np.sqrt(kappa * (1.0 + kappa))) * sps.ive(mu - 1, 2 * mu * x
            * np.sqrt(kappa * (1.0 + kappa))) / (np.power(kappa, (mu - 1.0) / 2.0)))

Then you want to do the following in order to draw samples:

from maoud.sampling import rejection_sampling

n_samples = int(1e6)
kappa = 0.75
mu = 0.87
low = 1e-6
high = 3

kappa_mu_samples, af = rejection_sampling(kappa_mu_pdf, low, high,
                                          n_samples, kappa, mu)

To verify that the samples are in accordance with Yacoub’s Kappa-Mu density, let’s plot the histogram of the samples:

import matplotlib.pyplot as plt

x = np.linspace(1e-6, 3, 1000)
y = kappa_mu_pdf(x, kappa, mu)

plt.plot(x, y)
plt.hist(kappa_mu_samples, bins=50, normed=True)
https://github.com/mirca/acceptance-rejection/raw/master/kappa_mu.png

SHAZAM!!

Citation

If you made use of the code available in this repository, please consider citing the following work:

@ARTICLE{7986939,
author={J. V. M. Cardoso and W. J. L. Queiroz and H. Liu and M. S. Alencar},
journal={Tsinghua Science and Technology},
title={On the performance of the energy detector subject to impulsive noise in κ—μ, α—μ, and η—μ fading channels},
year={2017},
volume={22},
number={4},
pages={360-367},
doi={10.23919/TST.2017.7986939},
month={Aug},}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
maoud-0.1.dev0.tar.gz (4.7 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page