Markdown tables parsing to pyspark / pandas DataFrames
Project description
Markdown Frames
Helper package for testing Apache Spark and Pandas DataFrames. It makes your data-related unit tests more readable.
History
While working at Exacaster Vaidas Armonas came up with the idea to make testing data more representable. And with the help of his team, he implemented the initial version of this package.
Before that, we had to define our testing data as follows:
schema = ["user_id", "even_type", "item_id", "event_time", "country", "dt"]
input_df = spark.createDataFrame([
(123456, 'page_view', None, datetime(2017,12,31,23,50,50), "uk", "2017-12-31"),
(123456, 'item_view', 68471513, datetime(2017,12,31,23,50,55), "uk", "2017-12-31")],
schema)
And with this library you can define same data like this:
input_data = """
| user_id | even_type | item_id | event_time | country | dt |
| bigint | string | bigint | timestamp | string | string |
| ---------- | ----------- | -------- | ------------------- | -------- | ----------- |
| 123456 | page_view | None | 2017-12-31 23:50:50 | uk | 2017-12-31 |
| 123456 | item_view | 68471513 | 2017-12-31 23:50:55 | uk | 2017-12-31 |
"""
input_df = spark_df(input_data, spark)
Installation
To install this package, run this command on your python environment:
pip install markdown_frames[pyspark]
Usage
When you have this package installed, you can use it in your unit tests as follows (assuming you are using pytest-spark ang have Spark Session available):
from pyspark.sql import SparkSession
from markdown_frames.spark_dataframe import spark_df
def test_your_use_case(spark: SpakSession): -> None
expected_data = """
| column1 | column2 | column3 | column4 |
| int | string | float | bigint |
| ------- | ------- | ------- | ------- |
| 1 | user1 | 3.14 | 111111 |
| 2 | None | 1.618 | 222222 |
| 3 | '' | 2.718 | 333333 |
"""
expected_df = spark_df(expected_data, spark)
actaual_df = your_use_case(spark)
assert expected_df.collect()) == actaual_df.collect())
Supported data types
This package supports all major datatypes, use these type names in your table definitions:
intbigintfloatdoublestringbooleandatetimestampdecimal(precision,scale)(scale and precision must be integers)array<int>(int can be replaced by any of mentioned types)map<string,int>(string and int can be replaced by any of mentioned types)
For null values use None keyword.
License
This project is MIT licensed.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file markdown_frames-1.0.6.tar.gz.
File metadata
- Download URL: markdown_frames-1.0.6.tar.gz
- Upload date:
- Size: 6.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.14
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
41c7b04ee9579490b2851c092d3f2f47482c5f85b124ed98860f0245d3fa34a0
|
|
| MD5 |
93dde8202f47498b16e5433385538d50
|
|
| BLAKE2b-256 |
b51ce1bf523d26db16a99d1b3c024834f8f5cdb3c52afb6f381fcc6ae6463c5e
|
File details
Details for the file markdown_frames-1.0.6-py3-none-any.whl.
File metadata
- Download URL: markdown_frames-1.0.6-py3-none-any.whl
- Upload date:
- Size: 8.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.14
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
829e1aab8afd8802d4222e67794ecb3a69eeaa7c463d33481c546d48a5a78f60
|
|
| MD5 |
a47f20a65d30819f7fe831373c239279
|
|
| BLAKE2b-256 |
399887758067c76a789a8c797a00af6b357ff59cd191f75c7ae28d906a5da0c1
|