Skip to main content

matorage is Matrix or Tensor(multidimensional matrix) Object Storage with high availability distributed systems for Deep Learning framework.

Project description

matorage

Build Status Documentation Status License: Apache 2.0 PyPI Downloads Code style: black

An efficient way to store/load and manage dataset, model and optimizer for deep learning with matorage!

Matorage is tensor(multidimensional matrix) object storage manager for deep learning framework(Pytorch, Tensorflow V2, Keras).

Features

  • Boilerplated data pipeline for dataset, model and optimizer.
  • High performance on tensor storage

For researchers who need to focus on model training:

  • Support storing data in pre-processed Tensor(multidimensional matrix), eliminate training time.
  • Reduce storage space through multiple compression methods.
  • Manage data and models while training

For AI Developer who need to focus on creating data pipeline:

  • Concurrency data save & load
  • Compatible with object storage such as MinIO, S3
  • Generate pipeline from user endpoints data.

Quick Start with Pytorch Example

For an example of tensorflow, refer to the detailed document. If you want to see the full code, see below

0. Install matorage with pip

$ pip install matorage

1. Set up Minio Server with docker

quick start with NAS(network access storage) using docker It can be managed through the web through the address http://127.0.0.1:9000/, and security is managed through MINIO_ACCESS_KEY and MINIO_SECRET_KEY.

$ mkdir ~/shared # create nas storage folder
$ docker run -it -p 9000:9000 \
    --restart always -e \
    "MINIO_ACCESS_KEY=minio" -e \
    "MINIO_SECRET_KEY=miniosecretkey" \
    -v ~/shared:/container/vol \
    minio/minio gateway nas /container/vol

2. Save pre-processed dataset

First, create a DataConfig by importing matorage. This is an example of pre-processing mnist and storing it in distributed storage. additional is freely in the form of a dict, and records the shape and type of tensor to be stored in attributes.

from matorage import DataConfig

traindata_config = DataConfig(
    endpoint='127.0.0.1:9000',
    access_key='minio',
    secret_key='miniosecretkey',
    dataset_name='mnist',
    additional={
        "mode": "train",
        "framework" : "pytorch",
        ...
        "blah" : "blah"
    },
    attributes=[
        ('image', 'float32', (1, 28, 28)),
        ('target', 'int64', (1))
    ]
)

Now do a simple pre-processing and save the data.

from matorage import DataSaver

traindata_saver = DataSaver(config=traindata_config)
train_loader = DataLoader(dataset, batch_size=60, num_workers=8)
for (image, target) in tqdm(train_loader):
    # image shape : torch.Size([64, 1, 28, 28])
    # target shape : torch.Size([64])
    traindata_saver({
        'image': image,
        'target': target
    })
traindata_saver.disconnect()

3. Load dataset from matorage

Now fetch data iteratively from storage with the same config as the saved dataset when training.

from matorage.torch import Dataset

train_dataset = Dataset(config=traindata_config, clear=True)
train_loader = DataLoader(
    train_dataset, batch_size=64, num_workers=8, shuffle=True
)

for batch_idx, (image, target) in enumerate(tqdm(train_loader)):
    image, target = image.to(device), target.to(device)

Only an index can be fetched through lazy load.

train_dataset = Dataset(config=traindata_config, clear=True)
print(train_dataset[0], len(train_dataset))

4. Save & Load Model when training

During training, you can save and load models of specific steps or epochs in distributed storage through inmemory. First, make the model config the same as the dataset.

from matorage import ModelConfig
from matorage.torch import ModelManager

model_config = ModelConfig(
    endpoint='127.0.0.1:9000',
    access_key='minio',
    secret_key='miniosecretkey',
    model_name='mnist_simple_training',
    additional={
        "version" : "1.0.1",
        ...
        "blah" : "blah"
    }
)

model_manager = ModelManager(config=model_config)
print(model_manager.get_metadata)
model_manager.save(model, epoch=1)
print(model_manager.get_metadata)

When an empty model is loaded with specific steps or epochs, the appropriate weight is filled into the model.

print(model.state_dict())
model_manager.load(model, epoch=1)
print(model.state_dict())
# load a layer weight.
print(model_manager.load('net1.0.weight', step=0))

5. Save & Load Optimizer when training

Save and load of optimizer is similar to managing model.

from matorage import OptimizerConfig
from matorage.torch import OptimizerManager

optimizer_config = OptimizerConfig(
    endpoint='127.0.0.1:9000',
    access_key='minio',
    secret_key='miniosecretkey',
    optimizer_name='adam',
    additional={
        "model" : "1.0.1",
        ...
        "blah" : "blah"
    }
)

optimizer_manager = OptimizerManager(config=optimizer_config)
print(optimizer_manager.get_metadata)
# The optimizer contains information about the step.
optimizer_manager.save(optimizer)
print(optimizer_manager.get_metadata)

When an empty optimizer is loaded with specific steps, the appropriate weight is filled into the optimizer.

optimizer = optim.Adam(model.parameters(), lr=0.01)
optimizer_manager.load(optimizer, step=938)

Unittest

$ git clone https://github.com/graykode/matorage && cd matorage
$ python -m tests.test_suite

Framework Requirement

  • torch(>=1.0.0), torchvision(>=0.2.2)
  • tensorflow(>=2.2), tensorflow_io(>=0.13)

Author

Tae Hwan Jung(@graykode) We are looking for a contributor.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

matorage-0.3.0.tar.gz (42.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

matorage-0.3.0-py3-none-any.whl (80.0 kB view details)

Uploaded Python 3

File details

Details for the file matorage-0.3.0.tar.gz.

File metadata

  • Download URL: matorage-0.3.0.tar.gz
  • Upload date:
  • Size: 42.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.5

File hashes

Hashes for matorage-0.3.0.tar.gz
Algorithm Hash digest
SHA256 8bc1901b9a9c7feef6d1e75f322eeff18cbdde5064327b3e62201d2e4adb0674
MD5 67fe0b070d31afd220e940dd5310c9a1
BLAKE2b-256 69663c1f7cf97067029da5007e2976cac75ae021e2c0c35b2ccfaf6399370c2f

See more details on using hashes here.

File details

Details for the file matorage-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: matorage-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 80.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.5

File hashes

Hashes for matorage-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 558826982711e481f93b14310ed96f8c001cfaf1142dd7de367a8b4860b06306
MD5 8e8fdece101622d2969f63cd41c14725
BLAKE2b-256 430788f300a745d1b56d069a8e363f3ff47f8002f78dcd5e96c9e83119fe7edf

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page