Skip to main content

Declarative, objected-oriented interface to matplotlib

Project description

matplotobjlib

This module is a wrapper for matplotlib, that enables creating plots in an easier declarative, more object-oriented format.

All functions and types are importable directly from matplotobjlib. The easiest way to get started is with matplotoblib.draw(...). This function takes either a single Suplot object or a 2d sequence of Subplots where each inner sequence represents a row. Each Subplot consists of 1 or more Plotables, the most useful being Graph.

# examples/sin.py

from matplotobjlib import draw, Graph, SubPlot
import numpy as np

xs = np.arange(-2*np.pi, 2*np.pi, 0.01)
ys = np.sin(xs)
draw(SubPlot(Graph(xs, ys, plot_type="-"), x_label="x", y_label="sin(x)"), title="sin")
# examples/trig.py

from matplotobjlib import draw, Graph, SubPlot
import numpy as np

xs = np.arange(-2*np.pi, 2*np.pi, 0.01)
draw(
    [
        [
            SubPlot(Graph(xs, np.sin(xs), plot_type="-"), x_label="x", y_label="sin(x)"),
            SubPlot(Graph(xs, np.cos(xs), plot_type="-"), x_label="x", y_label="cos(x)"),
        ],
        [
            SubPlot(Graph(xs, np.tan(xs), plot_type="-"), x_label="x", y_label="tan(x)"),
            SubPlot(Graph(xs, np.arcsin(xs), plot_type="-"), x_label="x", y_label="sin$^{-1}$(x)"),
        ]
    ],
    title="Trigonometry",
)

Additionally, for more control over the window, it can be accessed as a tkinter widget through TkFigure. The draw(...) function even uses this internally.

# examples/widget.py

import tkinter as tk
import numpy as np
from matplotobjlib import Graph, SubPlot, TkFigure

ts = np.arange(0, 10, 0.01)
xs = [t * np.cos(t) for t in ts]
ys = [t * np.sin(t) for t in ts]

root = tk.Tk()
widget = TkFigure(
    root, [[SubPlot(Graph(xs, ys, plot_type="-"), x_label="t*cos(t)", y_label="t*sin(t)")]], title="examples/widget.py"
)
widget.pack(expand=tk.YES, fill=tk.BOTH)
root.mainloop()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

matplotobjlib-1.0.1.tar.gz (9.4 kB view details)

Uploaded Source

Built Distribution

matplotobjlib-1.0.1-py3-none-any.whl (11.5 kB view details)

Uploaded Python 3

File details

Details for the file matplotobjlib-1.0.1.tar.gz.

File metadata

  • Download URL: matplotobjlib-1.0.1.tar.gz
  • Upload date:
  • Size: 9.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.1

File hashes

Hashes for matplotobjlib-1.0.1.tar.gz
Algorithm Hash digest
SHA256 fe902b0ed588fc57d9ffac051ecca9f34853a36a95293f4d0774da579340a8de
MD5 b3a0cce3c8cce9b79bb2754e36f081f4
BLAKE2b-256 04fe6c624ef98bdda26359be87a33f0d1a4c4d3a7db7119e4639928e5b4bf57a

See more details on using hashes here.

File details

Details for the file matplotobjlib-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: matplotobjlib-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 11.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.1

File hashes

Hashes for matplotobjlib-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1866d6ad2e010c7c832dc4569d2809112d334c0a3bf86f3df6f971d0491510e6
MD5 e361735a91d94ca3eff61a3cef711ae7
BLAKE2b-256 14dba617ca5d8403639b55ce367fc2cc491111acfbc56e395003710842e62fb0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page