Skip to main content

Multi-core Markov-chain Monte Carlo package.

Project description

mc3: Multi-core Markov-chain Monte Carlo

A Python implementation of the Markov-chain Monte Carlo algorithm.

Build Status Documentation Status PyPI Conda Version GitHub

Install as:

pip install mc3

or:

conda install -c conda-forge mc3

Docs at:

https://mc3.readthedocs.io/en/latest/

Cite as:

@ARTICLE{CubillosEtal2017apjRednoise,
       author = {{Cubillos}, Patricio and {Harrington}, Joseph and {Loredo}, Thomas J. and {Lust}, Nate B. and {Blecic}, Jasmina and {Stemm}, Madison},
        title = "{On Correlated-noise Analyses Applied to Exoplanet Light Curves}",
      journal = {\aj},
     keywords = {methods: statistical, planets and satellites: fundamental parameters, techniques: photometric, Astrophysics - Earth and Planetary Astrophysics},
         year = 2017,
        month = jan,
       volume = {153},
       number = {1},
          eid = {3},
        pages = {3},
          doi = {10.3847/1538-3881/153/1/3},
archivePrefix = {arXiv},
       eprint = {1610.01336},
 primaryClass = {astro-ph.EP},
       adsurl = {https://ui.adsabs.harvard.edu/abs/2017AJ....153....3C},
      adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for mc3, version 3.0.7
Filename, size File type Python version Upload date Hashes
Filename, size mc3-3.0.7.tar.gz (396.4 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page