Skip to main content

MCP (Model context protocol) server with LLMling backend

Project description

mcp-server-llmling

PyPI License Package status Daily downloads Weekly downloads Monthly downloads Distribution format Wheel availability Python version Implementation Releases Github Contributors Github Discussions Github Forks Github Issues Github Issues Github Watchers Github Stars Github Repository size Github last commit Github release date Github language count Github commits this week Github commits this month Github commits this year Package status Code style: black PyUp

Read the documentation!

LLMling Server Manual

Overview

mcp-server-llmling is a server for the Machine Chat Protocol (MCP) that provides a YAML-based configuration system for LLM applications.

LLMLing, the backend, provides a YAML-based configuration system for LLM applications. It allows to set up custom MCP servers serving content defined in YAML files.

  • Static Declaration: Define your LLM's environment in YAML - no code required
  • MCP Protocol: Built on the Machine Chat Protocol (MCP) for standardized LLM interaction
  • Component Types:
    • Resources: Content providers (files, text, CLI output, etc.)
    • Prompts: Message templates with arguments
    • Tools: Python functions callable by the LLM

The YAML configuration creates a complete environment that provides the LLM with:

  • Access to content via resources
  • Structured prompts for consistent interaction
  • Tools for extending capabilities

Key Features

1. Resource Management

  • Load and manage different types of resources:
    • Text files (PathResource)
    • Raw text content (TextResource)
    • CLI command output (CLIResource)
    • Python source code (SourceResource)
    • Python callable results (CallableResource)
    • Images (ImageResource)
  • Support for resource watching/hot-reload
  • Resource processing pipelines
  • URI-based resource access

2. Tool System

  • Register and execute Python functions as LLM tools
  • Support for OpenAPI-based tools
  • Entry point-based tool discovery
  • Tool validation and parameter checking
  • Structured tool responses

3. Prompt Management

  • Static prompts with template support
  • Dynamic prompts from Python functions
  • File-based prompts
  • Prompt argument validation
  • Completion suggestions for prompt arguments

4. Multiple Transport Options

  • Stdio-based communication (default)
  • Server-Sent Events (SSE) / Streamable HTTP for web clients
  • Support for custom transport implementations

Usage

With Zed Editor

Add LLMLing as a context server in your settings.json:

{
  "context_servers": {
    "llmling": {
      "command": {
        "env": {},
        "label": "llmling",
        "path": "uvx",
        "args": [
          "mcp-server-llmling",
          "start",
          "path/to/your/config.yml"
        ]
      },
      "settings": {}
    }
  }
}

With Claude Desktop

Configure LLMLing in your claude_desktop_config.json:

{
  "mcpServers": {
    "llmling": {
      "command": "uvx",
      "args": [
        "mcp-server-llmling",
        "start",
        "path/to/your/config.yml"
      ],
      "env": {}
    }
  }
}

Manual Server Start

Start the server directly from command line:

# Latest version
uvx mcp-server-llmling@latest

1. Programmatic usage

from llmling import RuntimeConfig
from mcp_server_llmling import LLMLingServer

async def main() -> None:
    async with RuntimeConfig.open(config) as runtime:
        server = LLMLingServer(runtime, enable_injection=True)
        await server.start()

asyncio.run(main())

2. Using Custom Transport

from llmling import RuntimeConfig
from mcp_server_llmling import LLMLingServer

async def main() -> None:
    async with RuntimeConfig.open(config) as runtime:
        server = LLMLingServer(
            config,
            transport="sse",
            transport_options={
                "host": "localhost",
                "port": 3001,
                "cors_origins": ["http://localhost:3000"]
            }
        )
        await server.start()

asyncio.run(main())

3. Resource Configuration

resources:
  python_code:
    type: path
    path: "./src/**/*.py"
    watch:
      enabled: true
      patterns:
        - "*.py"
        - "!**/__pycache__/**"

  api_docs:
    type: text
    content: |
      API Documentation
      ================
      ...

4. Tool Configuration

tools:
  analyze_code:
    import_path: "mymodule.tools.analyze_code"
    description: "Analyze Python code structure"

toolsets:
  api:
    type: openapi
    spec: "https://api.example.com/openapi.json"

[!TIP] For OpenAPI schemas, you can install Redocly CLI to bundle and resolve OpenAPI specifications before using them with LLMLing. This helps ensure your schema references are properly resolved and the specification is correctly formatted. If redocly is installed, it will be used automatically.

Server Configuration

The server is configured through a YAML file with the following sections:

global_settings:
  timeout: 30
  max_retries: 3
  log_level: "INFO"
  requirements: []
  pip_index_url: null
  extra_paths: []

resources:
  # Resource definitions...

tools:
  # Tool definitions...

toolsets:
  # Toolset definitions...

prompts:
  # Prompt definitions...

MCP Protocol

The server implements the MCP protocol which supports:

  1. Resource Operations

    • List available resources
    • Read resource content
    • Watch for resource changes
  2. Tool Operations

    • List available tools
    • Execute tools with parameters
    • Get tool schemas
  3. Prompt Operations

    • List available prompts
    • Get formatted prompts
    • Get completions for prompt arguments
  4. Notifications

    • Resource changes
    • Tool/prompt list updates
    • Progress updates
    • Log messages

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mcp_server_llmling-0.5.11.tar.gz (45.3 kB view details)

Uploaded Source

Built Distribution

mcp_server_llmling-0.5.11-py3-none-any.whl (45.8 kB view details)

Uploaded Python 3

File details

Details for the file mcp_server_llmling-0.5.11.tar.gz.

File metadata

  • Download URL: mcp_server_llmling-0.5.11.tar.gz
  • Upload date:
  • Size: 45.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for mcp_server_llmling-0.5.11.tar.gz
Algorithm Hash digest
SHA256 02ca824f0d0ff1235093ddae5d6781e974980ac31abbc629806fb083b8ad343f
MD5 57987826bca6da6dd1b06be79daf9bbd
BLAKE2b-256 01325b1a31fadca1ebd78dc6fdf2fac0fc195e6397f3d2bc575f077a0e1d3304

See more details on using hashes here.

Provenance

The following attestation bundles were made for mcp_server_llmling-0.5.11.tar.gz:

Publisher: build.yml on phil65/mcp-server-llmling

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file mcp_server_llmling-0.5.11-py3-none-any.whl.

File metadata

File hashes

Hashes for mcp_server_llmling-0.5.11-py3-none-any.whl
Algorithm Hash digest
SHA256 d79d6881c7045ed55b7ac934212d62a1fd97855176a93f718a9a629a287cb8d4
MD5 48be2d88ae5000eca0e629052426f712
BLAKE2b-256 7115ca56054891243b61326acce6a731563353c214bb175e25a5668fb973457a

See more details on using hashes here.

Provenance

The following attestation bundles were made for mcp_server_llmling-0.5.11-py3-none-any.whl:

Publisher: build.yml on phil65/mcp-server-llmling

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page