Skip to main content

MCP (Model context protocol) server with LLMling backend

Project description

mcp-server-llmling

PyPI License Package status Daily downloads Weekly downloads Monthly downloads Distribution format Wheel availability Python version Implementation Releases Github Contributors Github Discussions Github Forks Github Issues Github Issues Github Watchers Github Stars Github Repository size Github last commit Github release date Github language count Github commits this week Github commits this month Github commits this year Package status Code style: black PyUp

Read the documentation!

LLMling Server Manual

Overview

mcp-server-llmling is a server for the Machine Chat Protocol (MCP) that provides a YAML-based configuration system for LLM applications.

LLMLing, the backend, provides a YAML-based configuration system for LLM applications. It allows to set up custom MCP servers serving content defined in YAML files.

  • Static Declaration: Define your LLM's environment in YAML - no code required
  • MCP Protocol: Built on the Machine Chat Protocol (MCP) for standardized LLM interaction
  • Component Types:
    • Resources: Content providers (files, text, CLI output, etc.)
    • Prompts: Message templates with arguments
    • Tools: Python functions callable by the LLM

The YAML configuration creates a complete environment that provides the LLM with:

  • Access to content via resources
  • Structured prompts for consistent interaction
  • Tools for extending capabilities

Key Features

1. Resource Management

  • Load and manage different types of resources:
    • Text files (PathResource)
    • Raw text content (TextResource)
    • CLI command output (CLIResource)
    • Python source code (SourceResource)
    • Python callable results (CallableResource)
    • Images (ImageResource)
  • Support for resource watching/hot-reload
  • Resource processing pipelines
  • URI-based resource access

2. Tool System

  • Register and execute Python functions as LLM tools
  • Support for OpenAPI-based tools
  • Entry point-based tool discovery
  • Tool validation and parameter checking
  • Structured tool responses

3. Prompt Management

  • Static prompts with template support
  • Dynamic prompts from Python functions
  • File-based prompts
  • Prompt argument validation
  • Completion suggestions for prompt arguments

4. Multiple Transport Options

  • Stdio-based communication (default)
  • Server-Sent Events (SSE) for web clients
  • Support for custom transport implementations

Usage

With Zed Editor

Add LLMLing as a context server in your settings.json:

{
  "context_servers": {
    "llmling": {
      "command": {
        "env": {},
        "label": "llmling",
        "path": "uvx",
        "args": [
          "mcp-server-llmling",
          "start",
          "path/to/your/config.yml"
        ]
      },
      "settings": {}
    }
  }
}

With Claude Desktop

Configure LLMLing in your claude_desktop_config.json:

{
  "mcpServers": {
    "llmling": {
      "command": "uvx",
      "args": [
        "mcp-server-llmling",
        "start",
        "path/to/your/config.yml"
      ],
      "env": {}
    }
  }
}

Manual Server Start

Start the server directly from command line:

# Latest version
uvx mcp-server-llmling@latest

1. Programmatic usage

from llmling import RuntimeConfig
from mcp_server_llmling import LLMLingServer

async def main() -> None:
    async with RuntimeConfig.open(config) as runtime:
        server = LLMLingServer(runtime, enable_injection=True)
        await server.start()

asyncio.run(main())

2. Using Custom Transport

from llmling import RuntimeConfig
from mcp_server_llmling import LLMLingServer

async def main() -> None:
    async with RuntimeConfig.open(config) as runtime:
        server = LLMLingServer(
            config,
            transport="sse",
            transport_options={
                "host": "localhost",
                "port": 8000,
                "cors_origins": ["http://localhost:3000"]
            }
        )
        await server.start()

asyncio.run(main())

3. Resource Configuration

resources:
  python_code:
    type: path
    path: "./src/**/*.py"
    watch:
      enabled: true
      patterns:
        - "*.py"
        - "!**/__pycache__/**"

  api_docs:
    type: text
    content: |
      API Documentation
      ================
      ...

4. Tool Configuration

tools:
  analyze_code:
    import_path: "mymodule.tools.analyze_code"
    description: "Analyze Python code structure"

toolsets:
  api:
    type: openapi
    spec: "https://api.example.com/openapi.json"
    namespace: "api"

Server Configuration

The server is configured through a YAML file with the following sections:

global_settings:
  timeout: 30
  max_retries: 3
  log_level: "INFO"
  requirements: []
  pip_index_url: null
  extra_paths: []

resources:
  # Resource definitions...

tools:
  # Tool definitions...

toolsets:
  # Toolset definitions...

prompts:
  # Prompt definitions...

MCP Protocol

The server implements the MCP protocol which supports:

  1. Resource Operations

    • List available resources
    • Read resource content
    • Watch for resource changes
  2. Tool Operations

    • List available tools
    • Execute tools with parameters
    • Get tool schemas
  3. Prompt Operations

    • List available prompts
    • Get formatted prompts
    • Get completions for prompt arguments
  4. Notifications

    • Resource changes
    • Tool/prompt list updates
    • Progress updates
    • Log messages

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mcp_server_llmling-0.5.8.tar.gz (46.8 kB view details)

Uploaded Source

Built Distribution

mcp_server_llmling-0.5.8-py3-none-any.whl (48.8 kB view details)

Uploaded Python 3

File details

Details for the file mcp_server_llmling-0.5.8.tar.gz.

File metadata

  • Download URL: mcp_server_llmling-0.5.8.tar.gz
  • Upload date:
  • Size: 46.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for mcp_server_llmling-0.5.8.tar.gz
Algorithm Hash digest
SHA256 61b9b8fbbd3e86f38253eb5bd559e09ea091a4ef09fcd658c20b2f27dc0e6a81
MD5 e91d5f8fa33fd65dc8b04b7298d18269
BLAKE2b-256 b9cc181a36a7888b1138ff392cb9a4ccfe18df69370e8c2cbbf6c8bf34c85167

See more details on using hashes here.

Provenance

The following attestation bundles were made for mcp_server_llmling-0.5.8.tar.gz:

Publisher: build.yml on phil65/mcp-server-llmling

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file mcp_server_llmling-0.5.8-py3-none-any.whl.

File metadata

File hashes

Hashes for mcp_server_llmling-0.5.8-py3-none-any.whl
Algorithm Hash digest
SHA256 d61a4455216606ceba664887e2062ea67f01e2fb867b5c78831bbcd9c2e0b8e5
MD5 a35fbc48990e5351b8cf8c8c849b74f6
BLAKE2b-256 4875fa61d3af35c990f9f63537859b1b1bac1f37d48519ff7d5d0e5eebb7572f

See more details on using hashes here.

Provenance

The following attestation bundles were made for mcp_server_llmling-0.5.8-py3-none-any.whl:

Publisher: build.yml on phil65/mcp-server-llmling

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page