Skip to main content

A Model Compression Toolkit for neural networks

Project description

Model Compression Toolkit (MCT)

Model Compression Toolkit (MCT) is an open-source project for neural network model optimization under efficient, constrained hardware.

This project provides researchers, developers, and engineers tools for optimizing and deploying state-of-the-art neural networks on efficient hardware.

Specifically, this project aims to apply quantization to compress neural networks.

MCT is developed by researchers and engineers working at Sony Semiconductor Israel.

Table of Contents

Getting Started

This section provides an installation and a quick starting guide.

Installation

To install the latest stable release of MCT, run the following command:

pip install model-compression-toolkit

For installing the nightly version or installing from source, refer to the installation guide.

Quick start & tutorials

For an example of how to use MCT with TensorFlow or PyTorch on various models and tasks, check out the quick-start page and the results CSV.

In addition, a set of notebooks are provided for an easy start. For example:

Supported Versions

Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:

PyTorch 1.13 PyTorch 2.0 PyTorch 2.1
Python 3.9 Run Tests Run Tests Run Tests
Python 3.10 Run Tests Run Tests Run Tests
Python 3.11 Run Tests Run Tests
TensorFlow 2.12 TensorFlow 2.13 TensorFlow 2.14
Python 3.9 Run Tests Run Tests Run Tests
Python 3.10 Run Tests Run Tests Run Tests
Python 3.11 Run Tests Run Tests Run Tests

Supported Features

MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:

Data Generation

MCT provides tools for generating synthetic images based on the statistics stored in a model's batch normalization layers. These generated images are valuable for various compression tasks where image data is required, such as quantization and pruning. You can customize data generation configurations to suit your specific needs. Go to the Data Generation page.

Quantization

MCT supports different quantization methods:

Quantization Method Complexity Computational Cost
PTQ Low Low (order of minutes)
GPTQ (parameters fine-tuning using gradients) Mild Mild (order of 2-3 hours)
QAT High High (order of 12-36 hours)

In addition, MCT supports different quantization schemes for quantizing weights and activations:

  • Power-Of-Two (hardware-friendly quantization [1])
  • Symmetric
  • Uniform

Main features:

  • Graph optimizations: Transforming the model to an equivalent (yet, more efficient) model (for example, batch-normalization layer folding to its preceding linear layer).
  • Quantization parameter search: Different methods can be used to minimize the expected added quantization-noise during thresholds search (by default, we use Mean-Square-Error, but other metrics can be used such as No-Clipping, Mean-Average-Error, and more).
  • Advanced quantization algorithms: To prevent a performance degradation some algorithms are applied such as:
    • Shift negative correction: Symmetric activation quantization can hurt the model's performance when some layers output both negative and positive activations, but their range is asymmetric. For more details please visit [1].
    • Outliers filtering: Computing z-score for activation statistics to detect and remove outliers.
  • Clustering: Using non-uniform quantization grid to quantize the weights and activations to match their distributions.*
  • Mixed-precision search: Assigning quantization bit-width per layer (for weights/activations), based on the layer's sensitivity to different bit-widths.
  • Visualization: You can use TensorBoard to observe useful information for troubleshooting the quantized model's performance (for example, the model in different phases of the quantization, collected statistics, similarity between layers of the float and quantized model and bit-width configuration for mixed-precision quantization). For more details, please read the visualization documentation.
  • Target Platform Capabilities: The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the TPC README.

Enhanced Post-Training Quantization (EPTQ)

As part of the GPTQ we provide an advanced optimization algorithm called EPTQ.

The specifications of the algorithm are detailed in the paper: "EPTQ: Enhanced Post-Training Quantization via Label-Free Hessian" [4].

More details on the how to use EPTQ via MCT can be found in the EPTQ guidelines.

Experimental features

Some features are experimental and subject to future changes.

For more details, we highly recommend visiting our project website where experimental features are mentioned as experimental.

Results

Keras

Graph of MobileNetV2 accuracy on ImageNet vs average bit-width of weights, using single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.

For more results, please see [1]

Pytorch

We quantized classification networks from the torchvision library. In the following table we present the ImageNet validation results for these models:

Network Name Float Accuracy 8Bit Accuracy Data-Free 8Bit Accuracy
MobileNet V2 [3] 71.886 71.444 71.29
ResNet-18 [3] 69.86 69.63 69.53
SqueezeNet 1.1 [3] 58.128 57.678

For more results, please refer to quick start.

Contributions

MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.

*You will find more information about contributions in the Contribution guide.

License

Apache License 2.0.

References

[1] Habi, H.V., Peretz, R., Cohen, E., Dikstein, L., Dror, O., Diamant, I., Jennings, R.H. and Netzer, A., 2021. HPTQ: Hardware-Friendly Post Training Quantization. arXiv preprint.

[2] MobilNet from Keras applications.

[3] TORCHVISION.MODELS

[4] Gordon, O., Habi, H. V., & Netzer, A., 2023. EPTQ: Enhanced Post-Training Quantization via Label-Free Hessian. arXiv preprint

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mct-nightly-1.10.0.20231219.post408.tar.gz (406.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file mct-nightly-1.10.0.20231219.post408.tar.gz.

File metadata

File hashes

Hashes for mct-nightly-1.10.0.20231219.post408.tar.gz
Algorithm Hash digest
SHA256 989383e96ace260958f29fcd05001ce852370b44e07cfa59bc32198a6c4bb8a8
MD5 2f7cc476114752885b563a9404227baf
BLAKE2b-256 c39b01a8cb565bf7832d270625eaa4478eb15a164cc7972caa09aa1132658c03

See more details on using hashes here.

File details

Details for the file mct_nightly-1.10.0.20231219.post408-py3-none-any.whl.

File metadata

File hashes

Hashes for mct_nightly-1.10.0.20231219.post408-py3-none-any.whl
Algorithm Hash digest
SHA256 4836f1a4a65da5be8091bd0af3995aaea898cc7d84beedb3086cf93600767260
MD5 06768168b634e5b19b73936c771a3b59
BLAKE2b-256 3f8dff2b3014fb1c1a4a5ae3889081936270af7cd4d08c9c608db9f2b7e93966

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page