Limebit Medmodels Package
Project description
MedModels: A Rust-Powered Python Framework for Modern Healthcare Research
Motivation
Analyzing real-world evidence, especially patient data, is a complex task demanding accuracy and reproducibility. Currently, research teams often re-implement the same statistical methods and data processing pipelines, leading to inefficient codebases, faulty implementations and technical debt.
MedModels addresses these challenges by providing a standardized, reliable, and efficient framework for handling, processing, and analyzing electronic health records (EHR) and claims data.
Target Audience:
MedModels is designed for a wide range of users working with real-world data and electronic health records, including:
- (Pharmaco-)Epidemiologists
- Real-World Data Analysts
- Health Economists
- Clinicians
- Data Scientists
- Software Developers
Key Features
- Rust-Based Data Class: Facilitates the efficient transformation of patient data into adaptable and scalable network graph structures.
- High-Performance Computing: Handles large datasets in memory while maintaining fast processing speeds due to the underlying Rust implementation.
- Standardized Workflows: Streamlines common tasks in real-world evidence analysis, reducing the need for custom code.
- Interoperability: Supports collaboration and data sharing through a unified data structure and analysis framework.
Key Components
-
MedRecord Data Structure:
- Graph-Based Representation: Organizes medical data using nodes (e.g., patients, medications, diagnoses) and edges (e.g., date, dosage, duration) to capture complex interactions and dependencies.
- Efficient Querying: Enables efficient querying and retrieval of information from the graph structure, supporting various analytical tasks.
- Dynamic Management: Provides methods to add, remove, and modify nodes and edges, as well as their associated attributes, allowing for flexible data manipulation.
- Effortless Creation: Easily create a
MedRecord
from various data sources:- Pandas DataFrames: Seamlessly convert your existing Pandas DataFrames into a
MedRecord
. - Polars DataFrames: Alternatively, use Polars DataFrames as input for efficient data handling.
- Standard Python Structures: Create a
MedRecord
directly from standard Python data structures like dictionaries and lists, offering flexibility for different data formats.
- Pandas DataFrames: Seamlessly convert your existing Pandas DataFrames into a
- Grouping and Filtering: Allows grouping of nodes and edges for simplified management and targeted analysis of specific subsets of data.
- High-Performance Backend: Built on a Rust backend for optimal performance and efficient handling of large-scale medical datasets.
-
Treatment Effect Analysis:
-
Estimating Treatment Effects: Provides a range of methods for estimating treatment effects from observational data, including:
- Continuous Outcomes: Analyze treatment effects on continuous outcomes.
- Binary Outcomes: Estimate odds ratios, risk ratios, and other metrics for binary outcomes.
- Time-to-Event Outcomes: Perform survival analysis and estimate hazard ratios for time-to-event outcomes.
- Effect Size Metrics: Calculate standardized effect size metrics like Cohen's d and Hedges' g.
-
Matching:
- (High Dimensional) Propensity Score Matching: Reduce confounding bias by matching treated and untreated individuals based on their propensity scores.
- Nearest Neighbor Matching: Match individuals based on similarity in their observed characteristics.
-
Getting Started
Installation:
MedModels can be installed from PyPI using the pip
command:
pip install medmodels
Quick Start:
Here's a quick start guide showing an example of how to use MedModels to create a MedRecord
object, add nodes and edges, and perform basic operations.
import pandas as pd
import medmodels as mm
# Patients DataFrame (Nodes)
patients = pd.DataFrame(
[
["Patient 01", 72, "M", "USA"],
["Patient 02", 74, "M", "USA"],
["Patient 03", 64, "F", "GER"],
],
columns=["ID", "Age", "Sex", "Loc"],
)
# Medications DataFrame (Nodes)
medications = pd.DataFrame(
[["Med 01", "Insulin"], ["Med 02", "Warfarin"]], columns=["ID", "Name"]
)
# Patients-Medication Relation (Edges)
patient_medication = pd.DataFrame(
[
["Patient 02", "Med 01", pd.Timestamp("20200607")],
["Patient 02", "Med 02", pd.Timestamp("20180202")],
["Patient 03", "Med 02", pd.Timestamp("20190302")],
],
columns=["Pat_ID", "Med_ID", "Date"],
)
# Create a MedRecord object using the builder pattern
record = (
mm.MedRecord.builder()
.add_nodes((patients, "ID"), group="Patients")
.add_nodes((medications, "ID"), group="Medications")
.add_edges((patient_medication, "Pat_ID", "Med_ID"))
.add_group("US-Patients", nodes=["Patient 01", "Patient 02"])
.build()
)
# Print an combined overview of the nodes and edges in the MedRecord
print(record)
# You can also print only nodes and edges respectively
print(record.overview_nodes())
print(record.overview_edges())
# Accessing all available nodes
print(record.nodes)
# Output: ['Patient 03', 'Med 01', 'Med 02', 'Patient 01', 'Patient 02']
# Accessing a certain node and its attributes
print(record.node["Patient 01"])
# Output: {'Age': 72, 'Loc': 'USA', 'Sex': 'M'}
# Getting all available groups
print(record.groups)
# Output: ['Medications', 'Patients', 'US-Patients']
# Getting the nodes that are within a certain group
print(record.nodes_in_group("Medications"))
# Output: ['Med 02', 'Med 01']
# Save the MedRecord to a file in RON format
record.to_ron("record.ron")
# Load the MedRecord from the RON file
new_record = mm.MedRecord.from_ron("record.ron")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file medmodels-0.3.1.tar.gz
.
File metadata
- Download URL: medmodels-0.3.1.tar.gz
- Upload date:
- Size: 657.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
b3f87673d25c346c4201467bdcee993f599dbf2ea63673b7b65f95b095b7e3cf
|
|
MD5 |
08ff00b58e1592239d6e89a7c51a8fb2
|
|
BLAKE2b-256 |
1306d1d282894af36afd31a1f7ce6d7b738a28ab028f8406b6d43667cb3aed60
|
File details
Details for the file medmodels-0.3.1-cp313-cp313-win_amd64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp313-cp313-win_amd64.whl
- Upload date:
- Size: 7.7 MB
- Tags: CPython 3.13, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
266c1ea77eddf9b550727efac4890b3f3e4f1a41a17440cd5d4236fa8b62d43e
|
|
MD5 |
038db808c3055b7ad05701734560faf0
|
|
BLAKE2b-256 |
22f01caa07ba8f4389dbeb0b489502d7c058b9500a954cc8ac436eade22ba941
|
File details
Details for the file medmodels-0.3.1-cp313-cp313-win32.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp313-cp313-win32.whl
- Upload date:
- Size: 6.8 MB
- Tags: CPython 3.13, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
2ba498f4556619cc0592a93963092e728417786c8bd993f318432f2c881f4d93
|
|
MD5 |
123eae310703ba92f5ef5d48e062681d
|
|
BLAKE2b-256 |
5fdfe44dd147312c941f7e3f9c4415e94d13b7246a08ee26354e69ab7bbf4b71
|
File details
Details for the file medmodels-0.3.1-cp313-cp313-musllinux_1_2_x86_64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp313-cp313-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 8.9 MB
- Tags: CPython 3.13, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
1707683976555ea00b49e14f5cafc45ebe584c4cf744495a308f7081ad74a84f
|
|
MD5 |
9f2e6463baafc0eccaea4f77250d8d95
|
|
BLAKE2b-256 |
9dd8e4b344e565ebad7807f53ef2b2f5ff1347be3dbac3d7662540e55f9cae66
|
File details
Details for the file medmodels-0.3.1-cp313-cp313-musllinux_1_2_i686.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp313-cp313-musllinux_1_2_i686.whl
- Upload date:
- Size: 9.1 MB
- Tags: CPython 3.13, musllinux: musl 1.2+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
31066eddbc2a037eac2bd37347d6f5c0f19731f73ae105bfe2e27a735067dcd7
|
|
MD5 |
565210217706673502a1333da09fc350
|
|
BLAKE2b-256 |
49b60aebf3b019ea7d7be8d797f2fe2856393cab5b6f2faca0a239ac6dd58b8d
|
File details
Details for the file medmodels-0.3.1-cp313-cp313-musllinux_1_2_armv7l.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp313-cp313-musllinux_1_2_armv7l.whl
- Upload date:
- Size: 8.8 MB
- Tags: CPython 3.13, musllinux: musl 1.2+ ARMv7l
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
07bbbf7f30f2389eb7b9037e78b7788e1c124c55d150eac4b1f634e5e469e337
|
|
MD5 |
6c6998dfbe1e316193c121a0ee725ed4
|
|
BLAKE2b-256 |
0f47420c411e8c0b236cef043e4c999bc1b6990ffbc8e1b20fb47d50b26234aa
|
File details
Details for the file medmodels-0.3.1-cp313-cp313-musllinux_1_2_aarch64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp313-cp313-musllinux_1_2_aarch64.whl
- Upload date:
- Size: 8.3 MB
- Tags: CPython 3.13, musllinux: musl 1.2+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
f4546e518b8e8aa0c81a58bdf3c3770c3f95bf597ceb99745e2f2ec9cdefbdd1
|
|
MD5 |
4b54c2d5275a99fffe59f3a7170b12b7
|
|
BLAKE2b-256 |
54c35b0f41f41e243f089ec88448ee8264f7fd1f105189b4aa4817c17669cae2
|
File details
Details for the file medmodels-0.3.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 8.8 MB
- Tags: CPython 3.13, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
2c4c1648eddb53504c1ae928aba0805d102f26c1f7b1c01c60c451a6f7c57004
|
|
MD5 |
297e499c7c3d250503cf2b8de8639784
|
|
BLAKE2b-256 |
7e3676e51f601e6cf2423895efac9636294c315594902192ebc0e42401e0725f
|
File details
Details for the file medmodels-0.3.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
- Upload date:
- Size: 9.7 MB
- Tags: CPython 3.13, manylinux: glibc 2.17+ ppc64le
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
de1cb29e4e003b73a6412bb7c8ba5a28f8d1124bac31eecf5cfa6b4ac5ade326
|
|
MD5 |
378ad5a41d082a3b6201a4dee9ed3bb3
|
|
BLAKE2b-256 |
c2234cac79bf8bb46d978f366e6673f575d28451d473980a83b23283ff4345d7
|
File details
Details for the file medmodels-0.3.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 9.4 MB
- Tags: CPython 3.13, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
d4991f0c009c1246a30b157c0809ec253363deaa2b8ce4895476617e4b4ac610
|
|
MD5 |
30ae217657002ab10b2c96bda60e3255
|
|
BLAKE2b-256 |
8ad6afa9789359032239ac8d07b9646b1a6694290cd94d22d23d1814c58227b7
|
File details
Details for the file medmodels-0.3.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
- Upload date:
- Size: 8.5 MB
- Tags: CPython 3.13, manylinux: glibc 2.17+ ARMv7l
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
8abdb8b573c8bc997087a823a3300581d6a486dcefdaa4b2080ac8e94b17971a
|
|
MD5 |
9be274900edfd6a2c7be00cdc5208434
|
|
BLAKE2b-256 |
935eee0bc1da0cfde3dece6abdb63878fb02105cc8c148d870c2f6089d36fb52
|
File details
Details for the file medmodels-0.3.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 8.3 MB
- Tags: CPython 3.13, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
00a97ab3866ac1b028c70939c263daafe4455c33b9e9b69ef948134a61bf60ee
|
|
MD5 |
71805281ecc1fbf2e47719165feec028
|
|
BLAKE2b-256 |
90a0440f1fe09a70261e56240494ed717adf1ad8ac26d808510da2844d4bc001
|
File details
Details for the file medmodels-0.3.1-cp313-cp313-macosx_11_0_arm64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp313-cp313-macosx_11_0_arm64.whl
- Upload date:
- Size: 7.6 MB
- Tags: CPython 3.13, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
f4c641ddcb5f894f7554ba1282be1db172c054bbcf042c9d0d0029a73afab50e
|
|
MD5 |
1bac93942395e3b3c32a75727c1f1dbb
|
|
BLAKE2b-256 |
b32678387844f2253bbb3bd4ac82fac8a07d57f7757caaa3e8359ad1f202044d
|
File details
Details for the file medmodels-0.3.1-cp313-cp313-macosx_10_12_x86_64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp313-cp313-macosx_10_12_x86_64.whl
- Upload date:
- Size: 8.1 MB
- Tags: CPython 3.13, macOS 10.12+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
c885f9ba0d8296e27a5b54dc987f00740a36e43ef0f0291fb2f00c7021a181a5
|
|
MD5 |
1395daab22ce4b97c1fc9e3b67a40bc5
|
|
BLAKE2b-256 |
c17fda5e84cdf44b72cd1e58d77cb85a367e2398efed1e5ef57acc64fea931a8
|
File details
Details for the file medmodels-0.3.1-cp312-cp312-win_amd64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 7.7 MB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
7330520937b2e4ae1a9faf9c5cf862860501f1fd5225d2ceb35ef986bd73800a
|
|
MD5 |
7ecc31cffa6d2bda44619dd7e09da5f6
|
|
BLAKE2b-256 |
0334cbbd18e67b0a50399728370c0c42664f7077f0937a250a8d7b766ff37658
|
File details
Details for the file medmodels-0.3.1-cp312-cp312-win32.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp312-cp312-win32.whl
- Upload date:
- Size: 6.8 MB
- Tags: CPython 3.12, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
127662d52e9dfec5f225567b8604c0dd17e153d5e57e61dae0d1c7f1a3f9755a
|
|
MD5 |
c519afdd3b394252f6e2d30c9f1ec84f
|
|
BLAKE2b-256 |
ccd9dad5b3a7c42ad215c956961d9d257e0a6194f9324518a0fb27c92d2c9178
|
File details
Details for the file medmodels-0.3.1-cp312-cp312-musllinux_1_2_x86_64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp312-cp312-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 8.9 MB
- Tags: CPython 3.12, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
96f086a895fd257be8b0598985092578452c2da3652d8f8099405fbede16dfab
|
|
MD5 |
57245d1c74b8ac94f31ddd7d844e862c
|
|
BLAKE2b-256 |
d399dfaaa0c8ce17c0dd3609ee30faf71c5dc5b8bff66dfb54d3287df38fad10
|
File details
Details for the file medmodels-0.3.1-cp312-cp312-musllinux_1_2_i686.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp312-cp312-musllinux_1_2_i686.whl
- Upload date:
- Size: 9.1 MB
- Tags: CPython 3.12, musllinux: musl 1.2+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
f6ac85a343ea815b3e800f28703d65c0c9eedb7b0ea87e1abd951d060548d490
|
|
MD5 |
2a9aa7c461e1729c11419d1ec85e2228
|
|
BLAKE2b-256 |
c290426e30dced91fd7e4596bbd02fdf8809d2e181d6c58e54bb3a66f99041ec
|
File details
Details for the file medmodels-0.3.1-cp312-cp312-musllinux_1_2_armv7l.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp312-cp312-musllinux_1_2_armv7l.whl
- Upload date:
- Size: 8.8 MB
- Tags: CPython 3.12, musllinux: musl 1.2+ ARMv7l
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
c2b8115e1b150c59fddc469c39a8169b74b6685cd31e09366cdf60d8d586efc3
|
|
MD5 |
ed2528d142d9eee3da69f03400e1300f
|
|
BLAKE2b-256 |
e29973f1bb802aff9f19b718e3baf4b7637d989ba09c05a5331c521802d4887d
|
File details
Details for the file medmodels-0.3.1-cp312-cp312-musllinux_1_2_aarch64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp312-cp312-musllinux_1_2_aarch64.whl
- Upload date:
- Size: 8.3 MB
- Tags: CPython 3.12, musllinux: musl 1.2+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
80fdd54a32eb6421cf415b2b8f5bbba425fe9f0640ddbe0daeec349fa51cbad9
|
|
MD5 |
a3c17d8c732d9bcb9631e280a93f5976
|
|
BLAKE2b-256 |
9ead7d7e174842a19181d064b383de30a2a3f0f7daf6f43bfc62a17193c5765f
|
File details
Details for the file medmodels-0.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 8.8 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
048be2d25818dd34c8cf2efeb297e59cfe7c9129ae18869bea174cc2ca05f4f9
|
|
MD5 |
b8d858dfb527881b65c85ac7f8f843a8
|
|
BLAKE2b-256 |
32cfd7a25804a11c6e58dfcff6bba557804a3aaeb33d4fc3108cf12e6d903271
|
File details
Details for the file medmodels-0.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
- Upload date:
- Size: 9.7 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ ppc64le
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
be1a2c8983e9127bb9d94673c8011a4f18d0a3001a7356050d22ed784e7fc1fb
|
|
MD5 |
80aca820cd53ee2fdfb513ff5764d1f5
|
|
BLAKE2b-256 |
19e4bb98d3a18cfd2f56aaa99afe98b3a6224f2a9252874f1486e7b9e6b959be
|
File details
Details for the file medmodels-0.3.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 9.4 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
faf278d7fc48ce85e9ca8c5d85fabcab15e75de10168966d9b11d8113e685d99
|
|
MD5 |
8c3eb9f138320e5c322108897ac7e33a
|
|
BLAKE2b-256 |
af31c5ab34bdfe2adc3018a9f91c34368d7f1a4c96a7943eca7e952c32195201
|
File details
Details for the file medmodels-0.3.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
- Upload date:
- Size: 8.5 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ ARMv7l
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
0bf854fddbc1b979f229cbba0af04f2705f5f2dbe1958b7f1fadb447aeeb6774
|
|
MD5 |
5bff91dce2bf31c124c042ba3f461729
|
|
BLAKE2b-256 |
681cadaf7adc3765627d4542e595c1b89ec2e5a7dc341222b0a2cd531eb431c8
|
File details
Details for the file medmodels-0.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 8.3 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
7c6bb26ab828f904d8b3888ced022248e9b996b7d7bbe67af7212eeb12c2d19e
|
|
MD5 |
0994d7a505d1547c98d8dffa1357b367
|
|
BLAKE2b-256 |
363a7b8fba90b7fae78bb2097bcef545761dc70138f07cd0635938678e47a847
|
File details
Details for the file medmodels-0.3.1-cp312-cp312-macosx_11_0_arm64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp312-cp312-macosx_11_0_arm64.whl
- Upload date:
- Size: 7.6 MB
- Tags: CPython 3.12, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
eb5fab91f6b8a0af0d4969c97d9ffa801ae65f941d90e406c9ffe692b9c03983
|
|
MD5 |
c4b0b1c9a5dad0d5701b228cf60e62bc
|
|
BLAKE2b-256 |
bff03136b495ec69fa030bfbad67bc11e17418522d29dcfee8e9417f5d10899d
|
File details
Details for the file medmodels-0.3.1-cp312-cp312-macosx_10_12_x86_64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp312-cp312-macosx_10_12_x86_64.whl
- Upload date:
- Size: 8.1 MB
- Tags: CPython 3.12, macOS 10.12+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
252c026b2d3aa50f7850af8ff9d21ec2d35ca6490057b7aa52c0f27bfb46d8b2
|
|
MD5 |
249308032c17613676f6cc5934f3ff78
|
|
BLAKE2b-256 |
4953ef8624719bd0525493c5c9c8b666e40ccf2c1f13e85e60cad9fec0370dee
|
File details
Details for the file medmodels-0.3.1-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 7.7 MB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
a10658136de03c0b93e579241a2489a1bf737785624701e0bab637a8fa0f59b1
|
|
MD5 |
8cda5ce3ec7ce88e9f610f1d31899b26
|
|
BLAKE2b-256 |
dc7db2421158ab99a0040faca0d506f131f9556c57ac2a1438c339642284c500
|
File details
Details for the file medmodels-0.3.1-cp311-cp311-win32.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp311-cp311-win32.whl
- Upload date:
- Size: 6.9 MB
- Tags: CPython 3.11, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
ae2a11f0824659e81cc901ac0d67198edaba5ac99fdd4ef3eb865f602caa62db
|
|
MD5 |
339ebcb3b92c2f55a7dd4807024b0518
|
|
BLAKE2b-256 |
672e141971f15d6e01a0b3540817b36ff9b1a7da3bf5385fc3bb8a9f2f7cd534
|
File details
Details for the file medmodels-0.3.1-cp311-cp311-musllinux_1_2_x86_64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp311-cp311-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 8.9 MB
- Tags: CPython 3.11, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
a6fe4b1f84f7480e999e872106ac7078e46fd9bfea3fa7943d58705b03dcba6d
|
|
MD5 |
d582c6df046c4c09053795dcb01275e5
|
|
BLAKE2b-256 |
45815f3d8a8b8b07d228b1176fc8e203d742f170ef64ad2f1218986fbcbc5d03
|
File details
Details for the file medmodels-0.3.1-cp311-cp311-musllinux_1_2_i686.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp311-cp311-musllinux_1_2_i686.whl
- Upload date:
- Size: 9.1 MB
- Tags: CPython 3.11, musllinux: musl 1.2+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
6d577c65335abd11e3bd2d95a36acb69f4eaaac25faa9290bc28ba5757714858
|
|
MD5 |
e52996d61527e353c76a9d66552e345f
|
|
BLAKE2b-256 |
8bbba14a4f1d947a1a6a45688166ee9510b3980a9014d9e39c10ccb1e1ac2363
|
File details
Details for the file medmodels-0.3.1-cp311-cp311-musllinux_1_2_armv7l.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp311-cp311-musllinux_1_2_armv7l.whl
- Upload date:
- Size: 8.8 MB
- Tags: CPython 3.11, musllinux: musl 1.2+ ARMv7l
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
bffe06c5ee91e6e9d65470137c36d739e71c82a4a552bb209c32e43a0df4ea48
|
|
MD5 |
c152033763aa042ac1954e80ad5f6c36
|
|
BLAKE2b-256 |
af3aa97f504d54216271deda19707fe0cc5d678947e6ea84cc1c85e84f6b525d
|
File details
Details for the file medmodels-0.3.1-cp311-cp311-musllinux_1_2_aarch64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp311-cp311-musllinux_1_2_aarch64.whl
- Upload date:
- Size: 8.3 MB
- Tags: CPython 3.11, musllinux: musl 1.2+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
6cf1bb1b72867d69f7486e250484f49eb5e41fc78318090cab61e22a67bf7a64
|
|
MD5 |
afabc80d95443e64e710748042b1b0d1
|
|
BLAKE2b-256 |
11531c2a9da716e959e005f580343070e7625dbedf35d491e179d3a1b3726172
|
File details
Details for the file medmodels-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 8.8 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
c9bc149ca55c4afd9805f40e286e46bb79797ede399953902f49194a7783e60d
|
|
MD5 |
f252d96b8df06143058554c37e5b6434
|
|
BLAKE2b-256 |
e77e6757649cb6bc1759fb9d93226d215c286ebfd3894ea85946fbaf922b9432
|
File details
Details for the file medmodels-0.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
- Upload date:
- Size: 9.7 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ ppc64le
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
35da5fc1d9c6995761cb391cacfad4cb1773488e84917764219aef07ad472057
|
|
MD5 |
b0fc05469ad688d8d16b99d0a6e20bea
|
|
BLAKE2b-256 |
b96d88cd8f090b5a4bfc63dfbcd4e578209cd273dcad47eb2e98477aed2913b3
|
File details
Details for the file medmodels-0.3.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 9.4 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
c759fa5a53c1131be05a981916858bc360631a1cf8dceb431b379055c2b55ac7
|
|
MD5 |
44845cd209c0729aad84daf466043294
|
|
BLAKE2b-256 |
e1d003903d1be148d08f4761ad0afb9f5caa491f31d095c68c7f24dcafd91817
|
File details
Details for the file medmodels-0.3.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
- Upload date:
- Size: 8.5 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ ARMv7l
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
e2f69254a11ff32d8bc54f9827a8dfe4c928a985cf2b721a99b78a8c3c64818a
|
|
MD5 |
c7a0b5b721e51ebd553680746d6367c8
|
|
BLAKE2b-256 |
09ddbdd82c632b088c1933c67affefc96bc4a8b79ce567fc1604f9f58f4143ae
|
File details
Details for the file medmodels-0.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 8.3 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
7ab2942e597f0b73d791aeb43df2dcf8c3c2afcd91ae85356f65c8160239f8cc
|
|
MD5 |
223f0768ec1e19d6e2050086e68ab4bf
|
|
BLAKE2b-256 |
f767a69fcbc2606afe78cb96207fe5a0e340a27f39cee9ca79c5d8973a085ce2
|
File details
Details for the file medmodels-0.3.1-cp311-cp311-macosx_11_0_arm64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp311-cp311-macosx_11_0_arm64.whl
- Upload date:
- Size: 7.6 MB
- Tags: CPython 3.11, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
73023ed1ae061e6f68209c7d6642abc31274a5bd072f490c0224b99efc0aa8fc
|
|
MD5 |
1eec14ef4e31a35f1a9b8f1c67c0f766
|
|
BLAKE2b-256 |
2b1624022db3e969b1986fba75350dd76a4e5849082e5efe92606d861a0fe3a6
|
File details
Details for the file medmodels-0.3.1-cp311-cp311-macosx_10_12_x86_64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp311-cp311-macosx_10_12_x86_64.whl
- Upload date:
- Size: 8.1 MB
- Tags: CPython 3.11, macOS 10.12+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
b93fbf6dca94f2acac77452938325f2142cec9a3bfea687cde0c6abca3d8d931
|
|
MD5 |
f3406a0744e39a21d90410e813c0d940
|
|
BLAKE2b-256 |
a8969f1534e4832769ae43a06941b99d08917ce2b39e5a9081775032b9e08fb3
|
File details
Details for the file medmodels-0.3.1-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 7.7 MB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
2587885b1e6b554fb7e9fb03e48c06ed510c27c19c6c293f9d5aac49b55dac3e
|
|
MD5 |
53a474420c7d98a744248086c179e3ab
|
|
BLAKE2b-256 |
ce93096ef5cbbfe8edf1b878820d93fec869bacd9335a6a4f0323b6f1f2c9025
|
File details
Details for the file medmodels-0.3.1-cp310-cp310-win32.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp310-cp310-win32.whl
- Upload date:
- Size: 6.9 MB
- Tags: CPython 3.10, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
122ade579d910df213f91acff6a2a17a3b743b81a526da8c65e340be2b6def1e
|
|
MD5 |
afb892d9cbc9a7da8d81bff70cc0b5ff
|
|
BLAKE2b-256 |
541a812800090901e1591f281d06049469c9f99382ff0100e04252f7bc753290
|
File details
Details for the file medmodels-0.3.1-cp310-cp310-musllinux_1_2_x86_64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp310-cp310-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 8.9 MB
- Tags: CPython 3.10, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
6950e6b432088de88578b1eb7047918ea5e947bcc6eb83adeea426dd9065d93a
|
|
MD5 |
9aceb194f4e3d62e4a4e967dd5cb4793
|
|
BLAKE2b-256 |
45dabc9c731000a7434ce85590c304c38c87a1d9fbfc822e4809a5851e449deb
|
File details
Details for the file medmodels-0.3.1-cp310-cp310-musllinux_1_2_i686.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp310-cp310-musllinux_1_2_i686.whl
- Upload date:
- Size: 9.1 MB
- Tags: CPython 3.10, musllinux: musl 1.2+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
4b2697bf2f79a03232d702de4c479f4d33be45a0b16da0d006ffef76bffe2f8e
|
|
MD5 |
5079873a613e0e499963d9f22f3cce47
|
|
BLAKE2b-256 |
aa31021ee2aad3ad3ba3c15157c00988d69805c9f6cf0fe5aebd41cbe5266cc5
|
File details
Details for the file medmodels-0.3.1-cp310-cp310-musllinux_1_2_armv7l.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp310-cp310-musllinux_1_2_armv7l.whl
- Upload date:
- Size: 8.8 MB
- Tags: CPython 3.10, musllinux: musl 1.2+ ARMv7l
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
85c7b79f35324a6456b16e8a703f79d532953dd4d5defc8e590027e27d8de026
|
|
MD5 |
f2337a6fb72bd3a4c4494448ccf756a4
|
|
BLAKE2b-256 |
9065fd7f5f890a7404d1f90fb17c8efbba140b1c6348548dcdff6ab724ba17ad
|
File details
Details for the file medmodels-0.3.1-cp310-cp310-musllinux_1_2_aarch64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp310-cp310-musllinux_1_2_aarch64.whl
- Upload date:
- Size: 8.4 MB
- Tags: CPython 3.10, musllinux: musl 1.2+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
aed0ba00815d3aec79d6cbfdf22da8454f98a607e6541d586e1882d98830b228
|
|
MD5 |
6377135175fdcb6790ca87c99ed5ded7
|
|
BLAKE2b-256 |
8c60e4ed7ea5847afefea17c1e249d2c5dd99851e445d21d20f0fec7ffc8dd41
|
File details
Details for the file medmodels-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 8.8 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
76e0178e4563f2875e5d0bb3c193ffac34fa102d4f567e45118188ac6b94520e
|
|
MD5 |
8a21d2567d57430cd4128585a0762af1
|
|
BLAKE2b-256 |
f5d068f49fe997b98363802127dc435aacac0613c18ea6cd56c6e7e4152369e7
|
File details
Details for the file medmodels-0.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
- Upload date:
- Size: 9.7 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ ppc64le
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
22d950dcc63cf6dddfda104718ef3cf94142f107b7bae495911476820403a098
|
|
MD5 |
36b4adce4ccb7470bc1ea56780da13f9
|
|
BLAKE2b-256 |
30fcac329f6494c2e16b616aba05e08003d555e7470c2770c2d2e5f343b9d61b
|
File details
Details for the file medmodels-0.3.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 9.4 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
8aa9ce4a0a80cfbc44b3e4b35e3945f91ccb8c70ad4ca74e8aa4ed66ac554b8a
|
|
MD5 |
46a3014aa52d2a2c2b93e464cdb4cb0b
|
|
BLAKE2b-256 |
f7b2e8c6e68560159bc3cb73943df053fa54a22bce4498caeed91805bcb0870f
|
File details
Details for the file medmodels-0.3.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
- Upload date:
- Size: 8.5 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ ARMv7l
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
084b0091db62d06b241b5b828b6e2573f0a1038f018a05f76f8cd7e4c9887761
|
|
MD5 |
258c1c3ed749d3a8fde1d779bfa585ab
|
|
BLAKE2b-256 |
43dba2a97debcee2ef43e81d429acf715f5b3d70dd25df29c4624ab60ca6f041
|
File details
Details for the file medmodels-0.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 8.3 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
a672b84a1ca3d1e46cbc8bc8ee1a97b2893a30f0ff6e68faa342ddfea278e2e4
|
|
MD5 |
40849876a108bfab5dfe4c01926d826f
|
|
BLAKE2b-256 |
c995f982b66c051c4fb5c76692a85ed3d4d1b422d8d50143f87d86adb322b165
|
File details
Details for the file medmodels-0.3.1-cp310-cp310-macosx_11_0_arm64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp310-cp310-macosx_11_0_arm64.whl
- Upload date:
- Size: 7.6 MB
- Tags: CPython 3.10, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
44083efde7e5f04c0d4ef830713594a3f8589a90028e69b82a8a3b5faf84d5f2
|
|
MD5 |
1ad75d40b657288257986cd064046626
|
|
BLAKE2b-256 |
6a5751d8baa67de387d859ffda0dad2ac379bb4f85c471f61ce8dd0e6ea7b8a8
|
File details
Details for the file medmodels-0.3.1-cp310-cp310-macosx_10_12_x86_64.whl
.
File metadata
- Download URL: medmodels-0.3.1-cp310-cp310-macosx_10_12_x86_64.whl
- Upload date:
- Size: 8.1 MB
- Tags: CPython 3.10, macOS 10.12+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/1.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
2cd15de64f5c76b01cb61cc318c3392cbadd093b3c1e6144a57bc96a6f913a0f
|
|
MD5 |
bd6c2a090d9bde56881b2b80173da6b1
|
|
BLAKE2b-256 |
4d3527d9d92b4ccab8819c93455b5b0888f315452cca724922c0110bfd30a7c5
|