Skip to main content

Limebit Medmodels Package

Project description

MedModels Logo

MedModels: A Rust-Powered Python Framework for Modern Healthcare Research

Motivation

Analyzing real-world evidence, especially patient data, is a complex task demanding accuracy and reproducibility. Currently, research teams often re-implement the same statistical methods and data processing pipelines, leading to inefficient codebases, faulty implementations and technical debt.

MedModels addresses these challenges by providing a standardized, reliable, and efficient framework for handling, processing, and analyzing electronic health records (EHR) and claims data.

Target Audience:

MedModels is designed for a wide range of users working with real-world data and electronic health records, including:

  • (Pharmaco-)Epidemiologists
  • Real-World Data Analysts
  • Health Economists
  • Clinicians
  • Data Scientists
  • Software Developers

Key Features

  • Rust-Based Data Class: Facilitates the efficient transformation of patient data into adaptable and scalable network graph structures.
  • High-Performance Computing: Handles large datasets in memory while maintaining fast processing speeds due to the underlying Rust implementation.
  • Standardized Workflows: Streamlines common tasks in real-world evidence analysis, reducing the need for custom code.
  • Interoperability: Supports collaboration and data sharing through a unified data structure and analysis framework.

Key Components

  • MedRecord Data Structure:

    • Graph-Based Representation: Organizes medical data using nodes (e.g., patients, medications, diagnoses) and edges (e.g., date, dosage, duration) to capture complex interactions and dependencies.
    • Efficient Querying: Enables efficient querying and retrieval of information from the graph structure, supporting various analytical tasks.
    • Dynamic Management: Provides methods to add, remove, and modify nodes and edges, as well as their associated attributes, allowing for flexible data manipulation.
    • Effortless Creation: Easily create a MedRecord from various data sources:
      • Pandas DataFrames: Seamlessly convert your existing Pandas DataFrames into a MedRecord.
      • Polars DataFrames: Alternatively, use Polars DataFrames as input for efficient data handling.
      • Standard Python Structures: Create a MedRecord directly from standard Python data structures like dictionaries and lists, offering flexibility for different data formats.
    • Grouping and Filtering: Allows grouping of nodes and edges for simplified management and targeted analysis of specific subsets of data.
    • High-Performance Backend: Built on a Rust backend for optimal performance and efficient handling of large-scale medical datasets.
  • Treatment Effect Analysis:

    • Estimating Treatment Effects: Provides a range of methods for estimating treatment effects from observational data, including:

      • Continuous Outcomes: Analyze treatment effects on continuous outcomes.
      • Binary Outcomes: Estimate odds ratios, risk ratios, and other metrics for binary outcomes.
      • Time-to-Event Outcomes: Perform survival analysis and estimate hazard ratios for time-to-event outcomes.
      • Effect Size Metrics: Calculate standardized effect size metrics like Cohen's d and Hedges' g.
    • Matching:

      • (High Dimensional) Propensity Score Matching: Reduce confounding bias by matching treated and untreated individuals based on their propensity scores.
      • Nearest Neighbor Matching: Match individuals based on similarity in their observed characteristics.

Getting Started

Installation:

MedModels can be installed from PyPI using the pip command:

pip install medmodels

Quick Start:

Here's a quick start guide showing an example of how to use MedModels to create a MedRecord object, add nodes and edges, and perform basic operations.

import pandas as pd
import medmodels as mm

# Patients DataFrame (Nodes)
patients = pd.DataFrame(
    [
        ["Patient 01", 72, "M", "USA"],
        ["Patient 02", 74, "M", "USA"],
        ["Patient 03", 64, "F", "GER"],
    ],
    columns=["ID", "Age", "Sex", "Loc"],
)

# Medications DataFrame (Nodes)
medications = pd.DataFrame(
    [["Med 01", "Insulin"], ["Med 02", "Warfarin"]], columns=["ID", "Name"]
)

# Patients-Medication Relation (Edges)
patient_medication = pd.DataFrame(
    [
        ["Patient 02", "Med 01", pd.Timestamp("20200607")],
        ["Patient 02", "Med 02", pd.Timestamp("20180202")],
        ["Patient 03", "Med 02", pd.Timestamp("20190302")],
    ],
    columns=["Pat_ID", "Med_ID", "Date"],
)

# Create a MedRecord object using the builder pattern
record = (
    mm.MedRecord.builder()
    .add_nodes((patients, "ID"), group="Patients")
    .add_nodes((medications, "ID"), group="Medications")
    .add_edges((patient_medication, "Pat_ID", "Med_ID"))
    .add_group("US-Patients", nodes=["Patient 01", "Patient 02"])
    .build()
)

# Print an combined overview of the nodes and edges in the MedRecord
print(record)

# You can also print only nodes and edges respectively
print(record.overview_nodes())
print(record.overview_edges())

# Accessing all available nodes
print(record.nodes)
# Output: ['Patient 03', 'Med 01', 'Med 02', 'Patient 01', 'Patient 02']

# Accessing a certain node and its attributes
print(record.node["Patient 01"])
# Output: {'Age': 72, 'Loc': 'USA', 'Sex': 'M'}

# Getting all available groups
print(record.groups)
# Output: ['Medications', 'Patients', 'US-Patients']

# Getting the nodes that are within a certain group
print(record.nodes_in_group("Medications"))
# Output: ['Med 02', 'Med 01']

# Save the MedRecord to a file in RON format
record.to_ron("record.ron")

# Load the MedRecord from the RON file
new_record = mm.MedRecord.from_ron("record.ron")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

medmodels-0.3.1.tar.gz (657.7 kB view details)

Uploaded Source

Built Distributions

medmodels-0.3.1-cp313-cp313-win_amd64.whl (7.7 MB view details)

Uploaded CPython 3.13Windows x86-64

medmodels-0.3.1-cp313-cp313-win32.whl (6.8 MB view details)

Uploaded CPython 3.13Windows x86

medmodels-0.3.1-cp313-cp313-musllinux_1_2_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

medmodels-0.3.1-cp313-cp313-musllinux_1_2_i686.whl (9.1 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ i686

medmodels-0.3.1-cp313-cp313-musllinux_1_2_armv7l.whl (8.8 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARMv7l

medmodels-0.3.1-cp313-cp313-musllinux_1_2_aarch64.whl (8.3 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

medmodels-0.3.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

medmodels-0.3.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (9.7 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ppc64le

medmodels-0.3.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (9.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ i686

medmodels-0.3.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (8.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARMv7l

medmodels-0.3.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.3 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

medmodels-0.3.1-cp313-cp313-macosx_11_0_arm64.whl (7.6 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

medmodels-0.3.1-cp313-cp313-macosx_10_12_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.13macOS 10.12+ x86-64

medmodels-0.3.1-cp312-cp312-win_amd64.whl (7.7 MB view details)

Uploaded CPython 3.12Windows x86-64

medmodels-0.3.1-cp312-cp312-win32.whl (6.8 MB view details)

Uploaded CPython 3.12Windows x86

medmodels-0.3.1-cp312-cp312-musllinux_1_2_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

medmodels-0.3.1-cp312-cp312-musllinux_1_2_i686.whl (9.1 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ i686

medmodels-0.3.1-cp312-cp312-musllinux_1_2_armv7l.whl (8.8 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARMv7l

medmodels-0.3.1-cp312-cp312-musllinux_1_2_aarch64.whl (8.3 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

medmodels-0.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

medmodels-0.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (9.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ppc64le

medmodels-0.3.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (9.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686

medmodels-0.3.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (8.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARMv7l

medmodels-0.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.3 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

medmodels-0.3.1-cp312-cp312-macosx_11_0_arm64.whl (7.6 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

medmodels-0.3.1-cp312-cp312-macosx_10_12_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.12macOS 10.12+ x86-64

medmodels-0.3.1-cp311-cp311-win_amd64.whl (7.7 MB view details)

Uploaded CPython 3.11Windows x86-64

medmodels-0.3.1-cp311-cp311-win32.whl (6.9 MB view details)

Uploaded CPython 3.11Windows x86

medmodels-0.3.1-cp311-cp311-musllinux_1_2_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

medmodels-0.3.1-cp311-cp311-musllinux_1_2_i686.whl (9.1 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ i686

medmodels-0.3.1-cp311-cp311-musllinux_1_2_armv7l.whl (8.8 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARMv7l

medmodels-0.3.1-cp311-cp311-musllinux_1_2_aarch64.whl (8.3 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

medmodels-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

medmodels-0.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (9.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ppc64le

medmodels-0.3.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (9.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686

medmodels-0.3.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (8.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARMv7l

medmodels-0.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

medmodels-0.3.1-cp311-cp311-macosx_11_0_arm64.whl (7.6 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

medmodels-0.3.1-cp311-cp311-macosx_10_12_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.11macOS 10.12+ x86-64

medmodels-0.3.1-cp310-cp310-win_amd64.whl (7.7 MB view details)

Uploaded CPython 3.10Windows x86-64

medmodels-0.3.1-cp310-cp310-win32.whl (6.9 MB view details)

Uploaded CPython 3.10Windows x86

medmodels-0.3.1-cp310-cp310-musllinux_1_2_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

medmodels-0.3.1-cp310-cp310-musllinux_1_2_i686.whl (9.1 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ i686

medmodels-0.3.1-cp310-cp310-musllinux_1_2_armv7l.whl (8.8 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARMv7l

medmodels-0.3.1-cp310-cp310-musllinux_1_2_aarch64.whl (8.4 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARM64

medmodels-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

medmodels-0.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (9.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ppc64le

medmodels-0.3.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (9.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686

medmodels-0.3.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (8.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARMv7l

medmodels-0.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

medmodels-0.3.1-cp310-cp310-macosx_11_0_arm64.whl (7.6 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

medmodels-0.3.1-cp310-cp310-macosx_10_12_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.10macOS 10.12+ x86-64

File details

Details for the file medmodels-0.3.1.tar.gz.

File metadata

  • Download URL: medmodels-0.3.1.tar.gz
  • Upload date:
  • Size: 657.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.8.6

File hashes

Hashes for medmodels-0.3.1.tar.gz
Algorithm Hash digest
SHA256 b3f87673d25c346c4201467bdcee993f599dbf2ea63673b7b65f95b095b7e3cf
MD5 08ff00b58e1592239d6e89a7c51a8fb2
BLAKE2b-256 1306d1d282894af36afd31a1f7ce6d7b738a28ab028f8406b6d43667cb3aed60

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 266c1ea77eddf9b550727efac4890b3f3e4f1a41a17440cd5d4236fa8b62d43e
MD5 038db808c3055b7ad05701734560faf0
BLAKE2b-256 22f01caa07ba8f4389dbeb0b489502d7c058b9500a954cc8ac436eade22ba941

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp313-cp313-win32.whl.

File metadata

  • Download URL: medmodels-0.3.1-cp313-cp313-win32.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.8.6

File hashes

Hashes for medmodels-0.3.1-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 2ba498f4556619cc0592a93963092e728417786c8bd993f318432f2c881f4d93
MD5 123eae310703ba92f5ef5d48e062681d
BLAKE2b-256 5fdfe44dd147312c941f7e3f9c4415e94d13b7246a08ee26354e69ab7bbf4b71

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1707683976555ea00b49e14f5cafc45ebe584c4cf744495a308f7081ad74a84f
MD5 9f2e6463baafc0eccaea4f77250d8d95
BLAKE2b-256 9dd8e4b344e565ebad7807f53ef2b2f5ff1347be3dbac3d7662540e55f9cae66

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 31066eddbc2a037eac2bd37347d6f5c0f19731f73ae105bfe2e27a735067dcd7
MD5 565210217706673502a1333da09fc350
BLAKE2b-256 49b60aebf3b019ea7d7be8d797f2fe2856393cab5b6f2faca0a239ac6dd58b8d

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp313-cp313-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp313-cp313-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 07bbbf7f30f2389eb7b9037e78b7788e1c124c55d150eac4b1f634e5e469e337
MD5 6c6998dfbe1e316193c121a0ee725ed4
BLAKE2b-256 0f47420c411e8c0b236cef043e4c999bc1b6990ffbc8e1b20fb47d50b26234aa

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f4546e518b8e8aa0c81a58bdf3c3770c3f95bf597ceb99745e2f2ec9cdefbdd1
MD5 4b54c2d5275a99fffe59f3a7170b12b7
BLAKE2b-256 54c35b0f41f41e243f089ec88448ee8264f7fd1f105189b4aa4817c17669cae2

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2c4c1648eddb53504c1ae928aba0805d102f26c1f7b1c01c60c451a6f7c57004
MD5 297e499c7c3d250503cf2b8de8639784
BLAKE2b-256 7e3676e51f601e6cf2423895efac9636294c315594902192ebc0e42401e0725f

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 de1cb29e4e003b73a6412bb7c8ba5a28f8d1124bac31eecf5cfa6b4ac5ade326
MD5 378ad5a41d082a3b6201a4dee9ed3bb3
BLAKE2b-256 c2234cac79bf8bb46d978f366e6673f575d28451d473980a83b23283ff4345d7

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d4991f0c009c1246a30b157c0809ec253363deaa2b8ce4895476617e4b4ac610
MD5 30ae217657002ab10b2c96bda60e3255
BLAKE2b-256 8ad6afa9789359032239ac8d07b9646b1a6694290cd94d22d23d1814c58227b7

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 8abdb8b573c8bc997087a823a3300581d6a486dcefdaa4b2080ac8e94b17971a
MD5 9be274900edfd6a2c7be00cdc5208434
BLAKE2b-256 935eee0bc1da0cfde3dece6abdb63878fb02105cc8c148d870c2f6089d36fb52

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 00a97ab3866ac1b028c70939c263daafe4455c33b9e9b69ef948134a61bf60ee
MD5 71805281ecc1fbf2e47719165feec028
BLAKE2b-256 90a0440f1fe09a70261e56240494ed717adf1ad8ac26d808510da2844d4bc001

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f4c641ddcb5f894f7554ba1282be1db172c054bbcf042c9d0d0029a73afab50e
MD5 1bac93942395e3b3c32a75727c1f1dbb
BLAKE2b-256 b32678387844f2253bbb3bd4ac82fac8a07d57f7757caaa3e8359ad1f202044d

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp313-cp313-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp313-cp313-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 c885f9ba0d8296e27a5b54dc987f00740a36e43ef0f0291fb2f00c7021a181a5
MD5 1395daab22ce4b97c1fc9e3b67a40bc5
BLAKE2b-256 c17fda5e84cdf44b72cd1e58d77cb85a367e2398efed1e5ef57acc64fea931a8

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 7330520937b2e4ae1a9faf9c5cf862860501f1fd5225d2ceb35ef986bd73800a
MD5 7ecc31cffa6d2bda44619dd7e09da5f6
BLAKE2b-256 0334cbbd18e67b0a50399728370c0c42664f7077f0937a250a8d7b766ff37658

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: medmodels-0.3.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.8.6

File hashes

Hashes for medmodels-0.3.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 127662d52e9dfec5f225567b8604c0dd17e153d5e57e61dae0d1c7f1a3f9755a
MD5 c519afdd3b394252f6e2d30c9f1ec84f
BLAKE2b-256 ccd9dad5b3a7c42ad215c956961d9d257e0a6194f9324518a0fb27c92d2c9178

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 96f086a895fd257be8b0598985092578452c2da3652d8f8099405fbede16dfab
MD5 57245d1c74b8ac94f31ddd7d844e862c
BLAKE2b-256 d399dfaaa0c8ce17c0dd3609ee30faf71c5dc5b8bff66dfb54d3287df38fad10

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 f6ac85a343ea815b3e800f28703d65c0c9eedb7b0ea87e1abd951d060548d490
MD5 2a9aa7c461e1729c11419d1ec85e2228
BLAKE2b-256 c290426e30dced91fd7e4596bbd02fdf8809d2e181d6c58e54bb3a66f99041ec

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp312-cp312-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp312-cp312-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 c2b8115e1b150c59fddc469c39a8169b74b6685cd31e09366cdf60d8d586efc3
MD5 ed2528d142d9eee3da69f03400e1300f
BLAKE2b-256 e29973f1bb802aff9f19b718e3baf4b7637d989ba09c05a5331c521802d4887d

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 80fdd54a32eb6421cf415b2b8f5bbba425fe9f0640ddbe0daeec349fa51cbad9
MD5 a3c17d8c732d9bcb9631e280a93f5976
BLAKE2b-256 9ead7d7e174842a19181d064b383de30a2a3f0f7daf6f43bfc62a17193c5765f

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 048be2d25818dd34c8cf2efeb297e59cfe7c9129ae18869bea174cc2ca05f4f9
MD5 b8d858dfb527881b65c85ac7f8f843a8
BLAKE2b-256 32cfd7a25804a11c6e58dfcff6bba557804a3aaeb33d4fc3108cf12e6d903271

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 be1a2c8983e9127bb9d94673c8011a4f18d0a3001a7356050d22ed784e7fc1fb
MD5 80aca820cd53ee2fdfb513ff5764d1f5
BLAKE2b-256 19e4bb98d3a18cfd2f56aaa99afe98b3a6224f2a9252874f1486e7b9e6b959be

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 faf278d7fc48ce85e9ca8c5d85fabcab15e75de10168966d9b11d8113e685d99
MD5 8c3eb9f138320e5c322108897ac7e33a
BLAKE2b-256 af31c5ab34bdfe2adc3018a9f91c34368d7f1a4c96a7943eca7e952c32195201

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 0bf854fddbc1b979f229cbba0af04f2705f5f2dbe1958b7f1fadb447aeeb6774
MD5 5bff91dce2bf31c124c042ba3f461729
BLAKE2b-256 681cadaf7adc3765627d4542e595c1b89ec2e5a7dc341222b0a2cd531eb431c8

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7c6bb26ab828f904d8b3888ced022248e9b996b7d7bbe67af7212eeb12c2d19e
MD5 0994d7a505d1547c98d8dffa1357b367
BLAKE2b-256 363a7b8fba90b7fae78bb2097bcef545761dc70138f07cd0635938678e47a847

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eb5fab91f6b8a0af0d4969c97d9ffa801ae65f941d90e406c9ffe692b9c03983
MD5 c4b0b1c9a5dad0d5701b228cf60e62bc
BLAKE2b-256 bff03136b495ec69fa030bfbad67bc11e17418522d29dcfee8e9417f5d10899d

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 252c026b2d3aa50f7850af8ff9d21ec2d35ca6490057b7aa52c0f27bfb46d8b2
MD5 249308032c17613676f6cc5934f3ff78
BLAKE2b-256 4953ef8624719bd0525493c5c9c8b666e40ccf2c1f13e85e60cad9fec0370dee

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a10658136de03c0b93e579241a2489a1bf737785624701e0bab637a8fa0f59b1
MD5 8cda5ce3ec7ce88e9f610f1d31899b26
BLAKE2b-256 dc7db2421158ab99a0040faca0d506f131f9556c57ac2a1438c339642284c500

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: medmodels-0.3.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.9 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.8.6

File hashes

Hashes for medmodels-0.3.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 ae2a11f0824659e81cc901ac0d67198edaba5ac99fdd4ef3eb865f602caa62db
MD5 339ebcb3b92c2f55a7dd4807024b0518
BLAKE2b-256 672e141971f15d6e01a0b3540817b36ff9b1a7da3bf5385fc3bb8a9f2f7cd534

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a6fe4b1f84f7480e999e872106ac7078e46fd9bfea3fa7943d58705b03dcba6d
MD5 d582c6df046c4c09053795dcb01275e5
BLAKE2b-256 45815f3d8a8b8b07d228b1176fc8e203d742f170ef64ad2f1218986fbcbc5d03

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 6d577c65335abd11e3bd2d95a36acb69f4eaaac25faa9290bc28ba5757714858
MD5 e52996d61527e353c76a9d66552e345f
BLAKE2b-256 8bbba14a4f1d947a1a6a45688166ee9510b3980a9014d9e39c10ccb1e1ac2363

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp311-cp311-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp311-cp311-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 bffe06c5ee91e6e9d65470137c36d739e71c82a4a552bb209c32e43a0df4ea48
MD5 c152033763aa042ac1954e80ad5f6c36
BLAKE2b-256 af3aa97f504d54216271deda19707fe0cc5d678947e6ea84cc1c85e84f6b525d

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 6cf1bb1b72867d69f7486e250484f49eb5e41fc78318090cab61e22a67bf7a64
MD5 afabc80d95443e64e710748042b1b0d1
BLAKE2b-256 11531c2a9da716e959e005f580343070e7625dbedf35d491e179d3a1b3726172

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c9bc149ca55c4afd9805f40e286e46bb79797ede399953902f49194a7783e60d
MD5 f252d96b8df06143058554c37e5b6434
BLAKE2b-256 e77e6757649cb6bc1759fb9d93226d215c286ebfd3894ea85946fbaf922b9432

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 35da5fc1d9c6995761cb391cacfad4cb1773488e84917764219aef07ad472057
MD5 b0fc05469ad688d8d16b99d0a6e20bea
BLAKE2b-256 b96d88cd8f090b5a4bfc63dfbcd4e578209cd273dcad47eb2e98477aed2913b3

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c759fa5a53c1131be05a981916858bc360631a1cf8dceb431b379055c2b55ac7
MD5 44845cd209c0729aad84daf466043294
BLAKE2b-256 e1d003903d1be148d08f4761ad0afb9f5caa491f31d095c68c7f24dcafd91817

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 e2f69254a11ff32d8bc54f9827a8dfe4c928a985cf2b721a99b78a8c3c64818a
MD5 c7a0b5b721e51ebd553680746d6367c8
BLAKE2b-256 09ddbdd82c632b088c1933c67affefc96bc4a8b79ce567fc1604f9f58f4143ae

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7ab2942e597f0b73d791aeb43df2dcf8c3c2afcd91ae85356f65c8160239f8cc
MD5 223f0768ec1e19d6e2050086e68ab4bf
BLAKE2b-256 f767a69fcbc2606afe78cb96207fe5a0e340a27f39cee9ca79c5d8973a085ce2

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 73023ed1ae061e6f68209c7d6642abc31274a5bd072f490c0224b99efc0aa8fc
MD5 1eec14ef4e31a35f1a9b8f1c67c0f766
BLAKE2b-256 2b1624022db3e969b1986fba75350dd76a4e5849082e5efe92606d861a0fe3a6

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 b93fbf6dca94f2acac77452938325f2142cec9a3bfea687cde0c6abca3d8d931
MD5 f3406a0744e39a21d90410e813c0d940
BLAKE2b-256 a8969f1534e4832769ae43a06941b99d08917ce2b39e5a9081775032b9e08fb3

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2587885b1e6b554fb7e9fb03e48c06ed510c27c19c6c293f9d5aac49b55dac3e
MD5 53a474420c7d98a744248086c179e3ab
BLAKE2b-256 ce93096ef5cbbfe8edf1b878820d93fec869bacd9335a6a4f0323b6f1f2c9025

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: medmodels-0.3.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 6.9 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.8.6

File hashes

Hashes for medmodels-0.3.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 122ade579d910df213f91acff6a2a17a3b743b81a526da8c65e340be2b6def1e
MD5 afb892d9cbc9a7da8d81bff70cc0b5ff
BLAKE2b-256 541a812800090901e1591f281d06049469c9f99382ff0100e04252f7bc753290

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6950e6b432088de88578b1eb7047918ea5e947bcc6eb83adeea426dd9065d93a
MD5 9aceb194f4e3d62e4a4e967dd5cb4793
BLAKE2b-256 45dabc9c731000a7434ce85590c304c38c87a1d9fbfc822e4809a5851e449deb

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 4b2697bf2f79a03232d702de4c479f4d33be45a0b16da0d006ffef76bffe2f8e
MD5 5079873a613e0e499963d9f22f3cce47
BLAKE2b-256 aa31021ee2aad3ad3ba3c15157c00988d69805c9f6cf0fe5aebd41cbe5266cc5

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp310-cp310-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp310-cp310-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 85c7b79f35324a6456b16e8a703f79d532953dd4d5defc8e590027e27d8de026
MD5 f2337a6fb72bd3a4c4494448ccf756a4
BLAKE2b-256 9065fd7f5f890a7404d1f90fb17c8efbba140b1c6348548dcdff6ab724ba17ad

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 aed0ba00815d3aec79d6cbfdf22da8454f98a607e6541d586e1882d98830b228
MD5 6377135175fdcb6790ca87c99ed5ded7
BLAKE2b-256 8c60e4ed7ea5847afefea17c1e249d2c5dd99851e445d21d20f0fec7ffc8dd41

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76e0178e4563f2875e5d0bb3c193ffac34fa102d4f567e45118188ac6b94520e
MD5 8a21d2567d57430cd4128585a0762af1
BLAKE2b-256 f5d068f49fe997b98363802127dc435aacac0613c18ea6cd56c6e7e4152369e7

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 22d950dcc63cf6dddfda104718ef3cf94142f107b7bae495911476820403a098
MD5 36b4adce4ccb7470bc1ea56780da13f9
BLAKE2b-256 30fcac329f6494c2e16b616aba05e08003d555e7470c2770c2d2e5f343b9d61b

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8aa9ce4a0a80cfbc44b3e4b35e3945f91ccb8c70ad4ca74e8aa4ed66ac554b8a
MD5 46a3014aa52d2a2c2b93e464cdb4cb0b
BLAKE2b-256 f7b2e8c6e68560159bc3cb73943df053fa54a22bce4498caeed91805bcb0870f

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 084b0091db62d06b241b5b828b6e2573f0a1038f018a05f76f8cd7e4c9887761
MD5 258c1c3ed749d3a8fde1d779bfa585ab
BLAKE2b-256 43dba2a97debcee2ef43e81d429acf715f5b3d70dd25df29c4624ab60ca6f041

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a672b84a1ca3d1e46cbc8bc8ee1a97b2893a30f0ff6e68faa342ddfea278e2e4
MD5 40849876a108bfab5dfe4c01926d826f
BLAKE2b-256 c995f982b66c051c4fb5c76692a85ed3d4d1b422d8d50143f87d86adb322b165

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 44083efde7e5f04c0d4ef830713594a3f8589a90028e69b82a8a3b5faf84d5f2
MD5 1ad75d40b657288257986cd064046626
BLAKE2b-256 6a5751d8baa67de387d859ffda0dad2ac379bb4f85c471f61ce8dd0e6ea7b8a8

See more details on using hashes here.

File details

Details for the file medmodels-0.3.1-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.3.1-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 2cd15de64f5c76b01cb61cc318c3392cbadd093b3c1e6144a57bc96a6f913a0f
MD5 bd6c2a090d9bde56881b2b80173da6b1
BLAKE2b-256 4d3527d9d92b4ccab8819c93455b5b0888f315452cca724922c0110bfd30a7c5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page