Skip to main content

Python package for preparing small molecule for docking

Project description

Meeko: preparation of small molecules for AutoDock

License API stability PyPI version fury.io

Meeko reads an RDKit molecule object and writes a PDBQT string (or file) for AutoDock-Vina and AutoDock-GPU. Additionally, it has tools for post-processing of docking results which are not yet fully developed. Meeko supports the following features:

  • Docking with explicit water molecules attached to the ligand (paper)
  • Sampling of macrocyclic conformations during docking (paper)
  • Creation of RDKit molecules with docked coordinates from PDBQT or DLG files without loss of bond orders.

Meeko is developed by the Forli lab at the Center for Computational Structural Biology (CCSB) at Scripps Research.

Dependencies

  • Python (>=3.5)
  • Numpy
  • Scipy
  • RDKit

Conda or Miniconda can install the dependencies:

conda install -c conda-forge numpy scipy rdkit

Installation (from PyPI)

$ pip install meeko

If using conda, pip installs the package in the active environment.

Installation (from source)

$ git clone https://github.com/forlilab/Meeko
$ cd Meeko
$ pip install .

Optionally include --editable. Changes in the original package location take effect immediately without the need to run pip install . again.

$ pip install --editable .

Usage notes

Meeko does not calculate 3D coordinates or assign protonation states. Input molecules must have explicit hydrogens.

Examples using the command line scripts

mk_prepare_ligand.py -i molecule.sdf -o molecule.pdbqt
mk_prepare_ligand.py -i multi_mol.sdf --multimol_outdir folder_for_pdbqt_files
mk_copy_coords.py vina_results.pdbqt -o vina_results.sdf
mk_copy_coords.py adgpu_results.dlg -o adgpu_results.sdf

Quick Python tutorial

1. flexible macrocycle with attached waters

from meeko import MoleculePreparation
from rdkit import Chem

input_molecule_file = 'example/BACE_macrocycle/BACE_4.mol2'
mol = Chem.MolFromMol2File(input_molecule_file)

preparator = MoleculePreparation(hydrate=True) # macrocycles flexible by default since v0.3.0
preparator.prepare(mol)
preparator.show_setup()

output_pdbqt_file = "test_macrocycle_hydrate.pdbqt"
preparator.write_pdbqt_file(output_pdbqt_file)

Alternatively, the preparator can be initialized from a dictionary, which is useful for saving and loading configuration files with json. The command line tool mk_prepare_ligand.py can read the json files.

import json
from meeko import MoleculePreparation

mk_config = {"hydrate": True}
print(json.dumps(mk_config), file=open('mk_config.json', 'w'))
with open('mk_config.json') as f:
    mk_config = json.load(f)
preparator = MoleculePreparation.from_config(mk_config)

2. RDKit molecule from docking results

Assuming that 'docked.dlg' was written by AutoDock-GPU and that Meeko prepared the input ligands.

from meeko import PDBQTMolecule

with open("docked.dlg") as f:
    dlg_string = f.read()
pdbqt_mol = PDBQTMolecule(dlg_string, is_dlg=True, skip_typing=True)

# alternatively, read the .dlg file directly
pdbqt_mol = PDBQTMolecule.from_file("docked.dlg", is_dlg=True, skip_typing=True)

for pose in pdbqt_mol:
    rdkit_mol = pose.export_rdkit_mol()

For Vina's output PDBQT files, omit is_dlg=True.

pdbqt_mol = PDBQTMolecule.from_file("docking_results_from_vina.pdbqt", skip_typing=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

meeko-0.3.2.tar.gz (64.6 kB view details)

Uploaded Source

Built Distribution

meeko-0.3.2-py3-none-any.whl (83.1 kB view details)

Uploaded Python 3

File details

Details for the file meeko-0.3.2.tar.gz.

File metadata

  • Download URL: meeko-0.3.2.tar.gz
  • Upload date:
  • Size: 64.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for meeko-0.3.2.tar.gz
Algorithm Hash digest
SHA256 97bdf78628db2e0d473ef9942b73d3e01e85e92c20b572d1752326cc91437cb4
MD5 8470e0d7f6f63a47d56c086bba10c8cd
BLAKE2b-256 04fd03d4d7fb97c6ce5789eea55cc8a5a27b3c9ba2e9e8944c46855d0356786d

See more details on using hashes here.

File details

Details for the file meeko-0.3.2-py3-none-any.whl.

File metadata

  • Download URL: meeko-0.3.2-py3-none-any.whl
  • Upload date:
  • Size: 83.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for meeko-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 0aa671be6f0e1ab88d4df31c60151f95757f8cb967a92b2ff2f0d746a20a445e
MD5 9e17e6dc32b0e1a10a1622ddab6c5312
BLAKE2b-256 1a9d28755e7eb7679082f4e00ef3e9ad3365e9f90c0d341e95289306a7d10831

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page