Skip to main content

MERCS: Multi-Directional Ensembles of Regression and Classification treeS

Project description


MERCS stands for multi-directional ensembles of classification and regression trees. It is a novel ML-paradigm under active development at the DTAI-lab at KU Leuven.


Easy via pip;

pip install mercs


Our (very small) website can be found here.


Cf. the quickstart section of the website.


MERCS is fully open-source cf. our github-repository


MERCS is an active research project, hence we periodically publish our findings;

MERCS: Multi-Directional Ensembles of Regression and Classification Trees

Abstract Learning a function f(X) that predicts Y from X is the archetypal Machine Learning (ML) problem. Typically, both sets of attributes (i.e., X,Y) have to be known before a model can be trained. When this is not the case, or when functions f(X) that predict Y from X are needed for varying X and Y, this may introduce significant overhead (separate learning runs for each function). In this paper, we explore the possibility of omitting the specification of X and Y at training time altogether, by learning a multi-directional, or versatile model, which will allow prediction of any Y from any X. Specifically, we introduce a decision tree-based paradigm that generalizes the well-known Random Forests approach to allow for multi-directionality. The result of these efforts is a novel method called MERCS: Multi-directional Ensembles of Regression and Classification treeS. Experiments show the viability of the approach.

Authors Elia Van Wolputte, Evgeniya Korneva, Hendrik Blockeel

Open Access A pdf version can be found at AAAI-publications


People involved in this project:

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mercs-0.0.50.tar.gz (40.7 kB view hashes)

Uploaded source

Built Distribution

mercs-0.0.50-py3-none-any.whl (51.0 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page