Skip to main content

A Python Wrapper for Metabase API

Project description

PyPI version contributions welcome codecov GitHub license

Installation

pip install metabase-api

Initializing

Synchronous

from metabase_api import Metabase_API

# authentication using username/password
mb = Metabase_API('https://...', 'username', 'password')  # if password is not given, it will prompt for password

# authentication using API key
mb = Metabase_API('https://...', api_key='YOUR_API_KEY')

Async

from metabase_api import Metabase_API_Async

# authentication using username/password
mb = Metabase_API_Async('https://...', 'username', 'password')  # if password is not given, it will prompt for password

# authentication using API key
mb = Metabase_API_Async('https://...', api_key='YOUR_API_KEY')

Functions

REST functions (get, post, put, delete)

Calling Metabase API endpoints (documented here) can be done using the corresponding REST function in the wrapper.
E.g. to call the endpoint GET /api/database/, use mb.get('/api/database/').

For async operations, use await mb_async.get('/api/database/').

Helper Functions

You usually don't need to deal with these functions directly (e.g. get_item_info, get_item_id, get_item_name)

Custom Functions

For a complete list of functions parameters see the functions definitions using the above links. Here we provide a short description:

  • create_card

Specify the name to be used for the card, which table (name/id) to use as the source of data and where (i.e. which collection (name/id)) to save the card (default is the root collection).

mb.create_card(card_name='test_card', table_name='mySourceTable')  # Setting `verbose=True` will print extra information while creating the card.

Using the column_order parameter we can specify how the order of columns should be in the created card. Accepted values are 'alphabetical', 'db_table_order' (default), or a list of column names.

mb.create_card(card_name='test_card', table_name='mySourceTable', column_order=['myCol5', 'myCol3', 'myCol8'])

All or part of the function parameters and many more information (e.g. visualisation settings) can be provided to the function in a dictionary, using the custom_json parameter. (also see the make_json function below)

q = '''
  select *
  from my_table 
  where city = '{}'
'''

for city in city_list:

  query = q.format(city)
  
  # here I included the minimum keys required. You can add more.
  my_custom_json = {
    'name': 'test_card',
    'display': 'table',
    'dataset_query': {
      'database': db_id,
      'native': { 'query': query },
      'type': 'native' 
    }
  }
       
  # See the function definition for other parameters of the function (e.g. in which collection to save the card)
  mb.create_card(custom_json=my_custom_json)
  • create_collection

Create an empty collection. Provide the name of the collection, and the name or id of the parent collection (i.e. where you want the created collection to reside). If you want to create the collection in the root, you need to provide parent_collection_name='Root'.

mb.create_collection(collection_name='test_collection', parent_collection_id=123)
  • create_segment

Provide the name to be used for creating the segment, the name or id of the table you want to create the segment on, the column of that table to filter on and the filter values.

mb.create_segment(segment_name='test_segment', table_name='user_table', column_name='user_id', column_values=[123, 456, 789])
  • copy_card

At the minimum you need to provide the name/id of the card to copy and the name/id of the collection to copy the card to.

mb.copy_card(source_card_name='test_card', destination_collection_id=123)
  • copy_pulse

Similar to copy_card but for pulses.

mb.copy_pulse(source_pulse_name='test_pulse', destination_collection_id=123)
  • copy_dashboard

You can determine whether you want to deepcopy the dashboard or not (default False).
If you don't deepcopy, the duplicated dashboard will use the same cards as the original dashboard.
When you deepcopy a dashboard, the cards of the original dashboard are duplicated and these cards are used in the duplicate dashboard.
If the destination_dashboard_name parameter is not provided, the destination dashboard name will be the same as the source dashboard name (plus any postfix if provided).
The duplicated cards (in case of deepcopying) are saved in a collection called [destination_dashboard_name]'s cards and placed in the same collection as the duplicated dashboard.

mb.copy_dashboard(source_dashboard_id=123, destination_collection_id=456, deepcopy=True)
  • copy_collection

Copies the given collection and its contents to the given destination_parent_collection (name/id). You can determine whether to deepcopy the dashboards.

mb.copy_collection(source_collection_id=123, destination_parent_collection_id=456, deepcopy_dashboards=True, verbose=True)

You can also specify a postfix to be added to the names of the child items that get copied.

  • clone_card

Similar to copy_card but a different table is used as the source for filters of the card.
This comes in handy when you want to create similar cards with the same filters that differ only on the source of the filters (e.g. cards for 50 US states).

mb.clone_card(card_id=123, source_table_id=456, target_table_id=789, new_card_name='test clone', new_card_collection_id=1)
  • update_column

Update the column in Data Model by providing the relevant parameter (list of all parameters can be found here).
For example to change the column type to 'Category', we can use:

mb.update_column(column_name='myCol', table_name='myTable', params={'semantic_type':'type/Category'}  # (For Metabase versions before v.39, use: params={'special_type':'type/Category'}))
  • search

Searches for Metabase objects and returns basic info.
Provide the search term and optionally item_type to limit the results.

mb.search(q='test', item_type='card')
  • get_card_data

Returns the rows.
Provide the card name/id and the data format of the output (csv or json). You can also provide filter values.

results = mb.get_card_data(card_id=123, data_format='csv')
  • make_json

It's very helpful to use the Inspect tool of the browser (network tab) to see what Metabase is doing. You can then use the generated json code to build your automation. To turn the generated json in the browser into a Python dictionary, you can copy the code, paste it into triple quotes (''' ''') and apply the function make_json:

raw_json = ''' {"name":"test","dataset_query":{"database":165,"query":{"fields":[["field-id",35839],["field-id",35813],["field-id",35829],["field-id",35858],["field-id",35835],["field-id",35803],["field-id",35843],["field-id",35810],["field-id",35826],["field-id",35815],["field-id",35831],["field-id",35827],["field-id",35852],["field-id",35832],["field-id",35863],["field-id",35851],["field-id",35850],["field-id",35864],["field-id",35854],["field-id",35846],["field-id",35811],["field-id",35933],["field-id",35862],["field-id",35833],["field-id",35816]],"source-table":2154},"type":"query"},"display":"table","description":null,"visualization_settings":{"table.column_formatting":[{"columns":["Diff"],"type":"range","colors":["#ED6E6E","white","#84BB4C"],"min_type":"custom","max_type":"custom","min_value":-30,"max_value":30,"operator":"=","value":"","color":"#509EE3","highlight_row":false}],"table.pivot_column":"Sale_Date","table.cell_column":"SKUID"},"archived":false,"enable_embedding":false,"embedding_params":null,"collection_id":183,"collection_position":null,"result_metadata":[{"name":"Sale_Date","display_name":"Sale_Date","base_type":"type/DateTime","fingerprint":{"global":{"distinct-count":1,"nil%":0},"type":{"type/DateTime":{"earliest":"2019-12-28T00:00:00","latest":"2019-12-28T00:00:00"}}},"special_type":null},{"name":"Account_ID","display_name":"Account_ID","base_type":"type/Text","fingerprint":{"global":{"distinct-count":411,"nil%":0},"type":{"type/Text":{"percent-json":0,"percent-url":0,"percent-email":0,"average-length":9}}},"special_type":null},{"name":"Account_Name","display_name":"Account_Name","base_type":"type/Text","fingerprint":{"global":{"distinct-count":410,"nil%":0.0015},"type":{"type/Text":{"percent-json":0,"percent-url":0,"percent-email":0,"average-length":21.2916}}},"special_type":null},{"name":"Account_Type","display_name":"Account_Type","base_type":"type/Text","special_type":"type/Category","fingerprint":{"global":{"distinct-count":5,"nil%":0.0015},"type":{"type/Text":{"percent-json":0,"percent-url":0,"percent-email":0,"average-length":3.7594}}}}],"metadata_checksum":"7XP8bmR1h5f662CFE87tjQ=="} '''
myJson = mb.make_json(raw_json)  # setting 'prettyprint=True' will print the output in a structured format.
mb.create_card('test_card2', table_name='mySourceTable', custom_json={'visualization_settings':myJson['visualization_settings']})
  • move_to_archive

Moves the item (Card, Dashboard, Collection, Pulse, Segment) to the Archive section.

mb.move_to_archive('card', item_id=123)
  • delete_item

Deletes the item (Card, Dashboard, Pulse). Currently Collections and Segments cannot be deleted using the Metabase API.

mb.delete_item('card', item_id=123)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metabase-api-3.5.1.tar.gz (28.2 kB view details)

Uploaded Source

Built Distribution

metabase_api-3.5.1-py3-none-any.whl (32.8 kB view details)

Uploaded Python 3

File details

Details for the file metabase-api-3.5.1.tar.gz.

File metadata

  • Download URL: metabase-api-3.5.1.tar.gz
  • Upload date:
  • Size: 28.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for metabase-api-3.5.1.tar.gz
Algorithm Hash digest
SHA256 431809223b87cf58f0ad487de6f99b12f6b41d9b34aaa55faccaf141c68a0b86
MD5 c0c5f2915b12953aba3a6763ccdfd866
BLAKE2b-256 3e6d4df1dbdc5168071590c9604ae8fcf70d9c29c60251dd694dd0b9292688d5

See more details on using hashes here.

File details

Details for the file metabase_api-3.5.1-py3-none-any.whl.

File metadata

  • Download URL: metabase_api-3.5.1-py3-none-any.whl
  • Upload date:
  • Size: 32.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for metabase_api-3.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a46cfaed9e851cc3c47dc3f4f63e3df5f28d949c338b9e90ea61d99d8b579ce2
MD5 cc1f806b89b4f4e157530afbce01c70c
BLAKE2b-256 c082ecb619a5f8a995e2813561b563460b0a599c2e29f86997c142a64fc1c986

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page