Skip to main content

Metaflow: More AI and ML, Less Engineering

Project description

Metaflow_Logo_Horizontal_FullColor_Ribbon_Dark_RGB

Metaflow

Metaflow is a human-centric framework designed to help scientists and engineers build and manage real-life AI and ML systems. Serving teams of all sizes and scale, Metaflow streamlines the entire development lifecycle—from rapid prototyping in notebooks to reliable, maintainable production deployments—enabling teams to iterate quickly and deliver robust systems efficiently.

Originally developed at Netflix and now supported by Outerbounds, Metaflow is designed to boost the productivity for research and engineering teams working on a wide variety of projects, from classical statistics to state-of-the-art deep learning and foundation models. By unifying code, data, and compute at every stage, Metaflow ensures seamless, end-to-end management of real-world AI and ML systems.

Today, Metaflow powers thousands of AI and ML experiences across a diverse array of companies, large and small, including Amazon, Doordash, Dyson, Goldman Sachs, Ramp, and many others. At Netflix alone, Metaflow supports over 3000 AI and ML projects, executes hundreds of millions of data-intensive high-performance compute jobs processing petabytes of data and manages tens of petabytes of models and artifacts for hundreds of users across its AI, ML, data science, and engineering teams.

From prototype to production (and back)

Metaflow provides a simple and friendly pythonic API that covers foundational needs of AI and ML systems:

  1. Rapid local prototyping, support for notebooks, and built-in support for experiment tracking, versioning and visualization.
  2. Effortlessly scale horizontally and vertically in your cloud, utilizing both CPUs and GPUs, with fast data access for running massive embarrassingly parallel as well as gang-scheduled compute workloads reliably and efficiently.
  3. Easily manage dependencies and deploy with one-click to highly available production orchestrators with built in support for reactive orchestration.

For full documentation, check out our API Reference or see our Release Notes for the latest features and improvements.

Getting started

Getting up and running is easy. If you don't know where to start, Metaflow sandbox will have you running and exploring in seconds.

Installing Metaflow

To install Metaflow in your Python environment from PyPI:

pip install metaflow

Alternatively, using conda-forge:

conda install -c conda-forge metaflow

Once installed, a great way to get started is by following our tutorial. It walks you through creating and running your first Metaflow flow step by step.

For more details on Metaflow’s features and best practices, check out:

If you need help, don’t hesitate to reach out on our Slack community!

Deploying infrastructure for Metaflow in your cloud

While you can get started with Metaflow easily on your laptop, the main benefits of Metaflow lie in its ability to scale out to external compute clusters and to deploy to production-grade workflow orchestrators. To benefit from these features, follow this guide to configure Metaflow and the infrastructure behind it appropriately.

Get in touch

We'd love to hear from you. Join our community Slack workspace!

Contributing

We welcome contributions to Metaflow. Please see our contribution guide for more details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metaflow-2.19.19.tar.gz (1.6 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

metaflow-2.19.19-py2.py3-none-any.whl (1.8 MB view details)

Uploaded Python 2Python 3

File details

Details for the file metaflow-2.19.19.tar.gz.

File metadata

  • Download URL: metaflow-2.19.19.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for metaflow-2.19.19.tar.gz
Algorithm Hash digest
SHA256 f6b0c1ae5cb91493a9aa604726378265e2003a0d0dea70e8158dcfd198ef6cd7
MD5 2df6baefd153a56c314799a1f0f80935
BLAKE2b-256 f1bbd0d264311d339bb513bc25ec54c2ad580da3460c792666828d101228f3bc

See more details on using hashes here.

Provenance

The following attestation bundles were made for metaflow-2.19.19.tar.gz:

Publisher: publish.yml on Netflix/metaflow

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file metaflow-2.19.19-py2.py3-none-any.whl.

File metadata

  • Download URL: metaflow-2.19.19-py2.py3-none-any.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for metaflow-2.19.19-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 1949a0cdf1515e702b1bcc11cb47389617281f84aed01b0783c12358ad3349d2
MD5 c3f3a50fc654ae248a1caef21e37c741
BLAKE2b-256 1cd48bd3d3db18f9a78d4b77e70d9bbe6c5796b8fd494e88d9fb1210a539d8bf

See more details on using hashes here.

Provenance

The following attestation bundles were made for metaflow-2.19.19-py2.py3-none-any.whl:

Publisher: publish.yml on Netflix/metaflow

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page