Skip to main content

Metaflow: More AI and ML, Less Engineering

Project description

Metaflow_Logo_Horizontal_FullColor_Ribbon_Dark_RGB

Metaflow

Metaflow is a human-centric framework designed to help scientists and engineers build and manage real-life AI and ML systems. Serving teams of all sizes and scale, Metaflow streamlines the entire development lifecycle—from rapid prototyping in notebooks to reliable, maintainable production deployments—enabling teams to iterate quickly and deliver robust systems efficiently.

Originally developed at Netflix and now supported by Outerbounds, Metaflow is designed to boost the productivity for research and engineering teams working on a wide variety of projects, from classical statistics to state-of-the-art deep learning and foundation models. By unifying code, data, and compute at every stage, Metaflow ensures seamless, end-to-end management of real-world AI and ML systems.

Today, Metaflow powers thousands of AI and ML experiences across a diverse array of companies, large and small, including Amazon, Doordash, Dyson, Goldman Sachs, Ramp, and many others. At Netflix alone, Metaflow supports over 3000 AI and ML projects, executes hundreds of millions of data-intensive high-performance compute jobs processing petabytes of data and manages tens of petabytes of models and artifacts for hundreds of users across its AI, ML, data science, and engineering teams.

From prototype to production (and back)

Metaflow provides a simple and friendly pythonic API that covers foundational needs of AI and ML systems:

  1. Rapid local prototyping, support for notebooks, and built-in support for experiment tracking, versioning and visualization.
  2. Effortlessly scale horizontally and vertically in your cloud, utilizing both CPUs and GPUs, with fast data access for running massive embarrassingly parallel as well as gang-scheduled compute workloads reliably and efficiently.
  3. Easily manage dependencies and deploy with one-click to highly available production orchestrators with built in support for reactive orchestration.

For full documentation, check out our API Reference or see our Release Notes for the latest features and improvements.

Getting started

Getting up and running is easy. If you don't know where to start, Metaflow sandbox will have you running and exploring in seconds.

Installing Metaflow

To install Metaflow in your Python environment from PyPI:

pip install metaflow

Alternatively, using conda-forge:

conda install -c conda-forge metaflow

Once installed, a great way to get started is by following our tutorial. It walks you through creating and running your first Metaflow flow step by step.

For more details on Metaflow’s features and best practices, check out:

If you need help, don’t hesitate to reach out on our Slack community!

Deploying infrastructure for Metaflow in your cloud

While you can get started with Metaflow easily on your laptop, the main benefits of Metaflow lie in its ability to scale out to external compute clusters and to deploy to production-grade workflow orchestrators. To benefit from these features, follow this guide to configure Metaflow and the infrastructure behind it appropriately.

Get in touch

We'd love to hear from you. Join our community Slack workspace!

Contributing

We welcome contributions to Metaflow. Please see our contribution guide for more details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metaflow-2.15.21.tar.gz (1.4 MB view details)

Uploaded Source

Built Distribution

metaflow-2.15.21-py2.py3-none-any.whl (1.6 MB view details)

Uploaded Python 2Python 3

File details

Details for the file metaflow-2.15.21.tar.gz.

File metadata

  • Download URL: metaflow-2.15.21.tar.gz
  • Upload date:
  • Size: 1.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for metaflow-2.15.21.tar.gz
Algorithm Hash digest
SHA256 e8806e09c084b2fa8be9292b34c8d7274ea7447049f409b12479bbb8fe5e63e6
MD5 26da2dbe68020bbce687189a7d315c46
BLAKE2b-256 d55f4b018d2b255aed9070b18da26c08f3e96c6ee77623828fa94cd5d6f81879

See more details on using hashes here.

File details

Details for the file metaflow-2.15.21-py2.py3-none-any.whl.

File metadata

  • Download URL: metaflow-2.15.21-py2.py3-none-any.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for metaflow-2.15.21-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 3cb9a701082c71214e6bba94c8e17866f1f071a33d1ca3fc4f555df676a596ad
MD5 d5935634845adf17e54c530da9f7c004
BLAKE2b-256 01f68ab7ef34b17c7bd4fb3a6f466e0637fffa678fbd80ef87b06aa14ff087c7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page