Skip to main content

MetaGym: environments for benchmarking Reinforcement Learning and Meta Reinforcement Learning

Project description

MetaGym

MetaGym provides abundant environments for benchmarking Reinforcement Learning and Meta Reinforcement Learning

Environments Updating

  • LiftSim:Simulator for Evelvator Dispatching (Sep, 2019)

  • Quadrotor: 3D Quadrotor simulator for different tasks (Mar, 2020)

  • Quadrupedal: Quadrupedal robot adapting to different terrains (Seq, 2021)

  • MetaMaze: 2D/3D maze generators for task generalization (Oct, 2021)

  • MetaLocomotion: Locomotion simulator with diverse geometries (June, 2022)

  • MetaLM: Meta language model dataset (Dec, 2022)

  • Bandits: Bandits task generalization (Dec, 2022)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metagym-0.2.0.dev2.tar.gz (135.0 kB view details)

Uploaded Source

Built Distribution

metagym-0.2.0.dev2-py2.py3-none-any.whl (18.0 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file metagym-0.2.0.dev2.tar.gz.

File metadata

  • Download URL: metagym-0.2.0.dev2.tar.gz
  • Upload date:
  • Size: 135.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for metagym-0.2.0.dev2.tar.gz
Algorithm Hash digest
SHA256 09ca7dddec75537d8d3b6ebc0a7615ee2570c0aeb74f6e75c46aace1b3d9eb9b
MD5 ad69df6146fec1f841b2280605e7350c
BLAKE2b-256 a7402b6b3003eecd29e3ab8f4d46a80248dcead9b3c323b8d8ab9c29be3a1909

See more details on using hashes here.

File details

Details for the file metagym-0.2.0.dev2-py2.py3-none-any.whl.

File metadata

  • Download URL: metagym-0.2.0.dev2-py2.py3-none-any.whl
  • Upload date:
  • Size: 18.0 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for metagym-0.2.0.dev2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 1ceb32009abe1a849167189f754e1249c5aed5860b4a97a858da983b71c7c6db
MD5 a5b83e6e400b2e2d86bdce6adab8829c
BLAKE2b-256 428d6ee22679dc5a3aac6a3c358316dea108330f25492d23f2cd3812b7dba3da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page