Skip to main content

Python implementations of metric learning algorithms

Project description

Travis-CI Build Status License PyPI version Code coverage

metric-learn

Metric Learning algorithms in Python.

Algorithms

  • Large Margin Nearest Neighbor (LMNN)
  • Information Theoretic Metric Learning (ITML)
  • Sparse Determinant Metric Learning (SDML)
  • Least Squares Metric Learning (LSML)
  • Neighborhood Components Analysis (NCA)
  • Local Fisher Discriminant Analysis (LFDA)
  • Relative Components Analysis (RCA)
  • Metric Learning for Kernel Regression (MLKR)
  • Mahalanobis Metric for Clustering (MMC)

Dependencies

  • Python 2.7+, 3.4+
  • numpy, scipy, scikit-learn>=0.20.3

Optional dependencies

  • For SDML, using skggm will allow the algorithm to solve problematic cases (install from commit a0ed406).
  • For running the examples only: matplotlib

Installation/Setup

Run pip install metric-learn to download and install from PyPI.

Run python setup.py install for default installation.

Run pytest test to run all tests (you will need to have the pytest package installed).

Usage

See the sphinx documentation for full documentation about installation, API, usage, and examples.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for metric-learn, version 0.5.0
Filename, size & hash File type Python version Upload date
metric_learn-0.5.0-py2.py3-none-any.whl (60.9 kB) View hashes Wheel py2.py3
metric-learn-0.5.0.tar.gz (71.3 kB) View hashes Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page