Skip to main content

Generating reports on metrics for Machine Learning models

Project description

Metrics Report

PyPI - Python Version PyPI Telegram License


MetricsReport is a Python package that generates classification and regression metrics report for machine learning models.

sample

Features

  • AutoDetect the type of task
  • Save report in .html and .md format
  • Has several plotting functions

Installation

You can install MetricsReport using pip:

pip install metricsreport

Usage

from metricsreport import MetricsReport  

# sample classification data 
y_true = [1, 0, 0, 1, 0, 1, 0, 1] 
y_pred = [0.8, 0.3, 0.1, 0.9, 0.4, 0.7, 0.2, 0.6]  

# generate report 
report = MetricsReport(y_true, y_pred, threshold=0.5)  

# print all metrics 
print(report.metrics)  

# plot ROC curve 
report.plot_roc_curve()

# saved MetricsReport (html) in folder: report_metrics
report.save_report()

More examples in the folder ./examples:

Constructor

MetricsReport(y_true, y_pred, threshold: float = 0.5)
  • y_true : list
    • A list of true target values.
  • y_pred : list
    • A list of predicted target values.
  • threshold : float
    • Threshold for generating binary classification metrics. Default is 0.5.

Plots

following methods can be used to generate plots:

  • plot_roc_curve(): Generates a ROC curve plot.
  • plot_all_count_metrics(): Generates a count metrics plot.
  • plot_precision_recall_curve(): Generates a precision-recall curve plot.
  • plot_confusion_matrix(): Generates a confusion matrix plot.
  • plot_class_distribution(): Generates a class distribution plot.
  • plot_class_hist(): Generates a class histogram plot.
  • plot_calibration_curve(): Generates a calibration curve plot.
  • plot_lift_curve(): Generates a lift curve plot.
  • plot_cumulative_gain(): Generates a cumulative gain curve plot.

Dependencies

  • numpy
  • pandas
  • matplotlib
  • scikit-learn
  • scikit-plot

License

This project is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metricsreport-2025.7.23.tar.gz (14.1 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

metricsreport-2025.7.23-py3-none-any.whl (14.3 kB view details)

Uploaded Python 3

File details

Details for the file metricsreport-2025.7.23.tar.gz.

File metadata

  • Download URL: metricsreport-2025.7.23.tar.gz
  • Upload date:
  • Size: 14.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.2 Linux/6.8.8-2-pve

File hashes

Hashes for metricsreport-2025.7.23.tar.gz
Algorithm Hash digest
SHA256 0bc5c06640b608b69a352e014b8f263aa570dea63a2365682d9de39f1a0066b0
MD5 f1fb28b94dd138735b3deeb85631b264
BLAKE2b-256 5f30455d307ac0a2bbc802fc97ee09b571e600a0c87734e7a68f3fee3cf0b177

See more details on using hashes here.

File details

Details for the file metricsreport-2025.7.23-py3-none-any.whl.

File metadata

  • Download URL: metricsreport-2025.7.23-py3-none-any.whl
  • Upload date:
  • Size: 14.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.2 Linux/6.8.8-2-pve

File hashes

Hashes for metricsreport-2025.7.23-py3-none-any.whl
Algorithm Hash digest
SHA256 4f5247b171f033bb6647b66fd7e36d2d6fedb985652554e04227e010d5e16495
MD5 2ecc0b5508c102d71f3e4741d9e656b4
BLAKE2b-256 735556501ebee023a9f6cbe29be88753b32ed315d2f1a6dfd4829d673e4b8911

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page