Skip to main content

Python analytics client for the Micromegas observability platform

Project description

Micromegas

Python analytics client for https://github.com/madesroches/micromegas/

📖 Complete Python API Documentation - Comprehensive guide with all methods, examples, and advanced patterns

Example usage

Query the 2 most recent log entries from the flightsql service

import datetime
import micromegas

# Connect to local server
client = micromegas.connect()
sql = """
SELECT time, process_id, level, target, msg
FROM log_entries
WHERE level <= 4
AND exe LIKE '%flight%'
ORDER BY time DESC
LIMIT 2
"""

now = datetime.datetime.now(datetime.timezone.utc)
begin = now - datetime.timedelta(minutes=2)
end = now
df = client.query(sql, begin, end)
print(df)
time process_id level target msg
0 2024-10-03 18:17:56.087543714+00:00 1db06afc-1c88-47d1-81b3-f398c5f93616 4 acme_telemetry::trace_middleware response status=200 OK uri=/analytics/query
1 2024-10-03 18:17:53.924037729+00:00 1db06afc-1c88-47d1-81b3-f398c5f93616 4 micromegas_analytics::lakehouse::query query sql=
SELECT time, process_id, level, target, msg
FROM log_entries
WHERE level <= 4
AND exe LIKE '%analytics%'
ORDER BY time DESC
LIMIT 2

Query the 10 slowest top level spans in a trace within a specified time window

import datetime
import micromegas

client = micromegas.connect()

# First find a stream ID
end = datetime.datetime.now(datetime.timezone.utc)
begin = end - datetime.timedelta(hours=1)
streams = client.query_streams(begin, end, limit=1)

if not streams.empty:
    stream_id = streams['stream_id'].iloc[0]
    
    sql = """
    SELECT begin, end, duration, name
    FROM view_instance('thread_spans', '{}')
    WHERE depth=1
    ORDER BY duration DESC
    LIMIT 10
    """.format(stream_id)
    
    spans = client.query(sql, begin, end)
    print(spans)
begin end duration name
0 2024-10-03 18:00:59.308952900+00:00 2024-10-03 18:00:59.371890+00:00 62937100 FEngineLoop::Tick
1 2024-10-03 18:00:58.752476800+00:00 2024-10-03 18:00:58.784389+00:00 31912200 FEngineLoop::Tick
2 2024-10-03 18:00:58.701507300+00:00 2024-10-03 18:00:58.731479500+00:00 29972200 FEngineLoop::Tick
3 2024-10-03 18:00:59.766343100+00:00 2024-10-03 18:00:59.792513700+00:00 26170600 FEngineLoop::Tick
4 2024-10-03 18:00:59.282902100+00:00 2024-10-03 18:00:59.308952500+00:00 26050400 FEngineLoop::Tick
5 2024-10-03 18:00:59.816034500+00:00 2024-10-03 18:00:59.841376900+00:00 25342400 FEngineLoop::Tick
6 2024-10-03 18:00:58.897813100+00:00 2024-10-03 18:00:58.922769700+00:00 24956600 FEngineLoop::Tick
7 2024-10-03 18:00:59.860637+00:00 2024-10-03 18:00:59.885523700+00:00 24886700 FEngineLoop::Tick
8 2024-10-03 18:00:58.630051300+00:00 2024-10-03 18:00:58.654871500+00:00 24820200 FEngineLoop::Tick
9 2024-10-03 18:00:57.952279800+00:00 2024-10-03 18:00:57.977024+00:00 24744200 FEngineLoop::Tick

Quick Start

For a complete getting started guide, see the Python API Documentation.

Schema Reference

For complete schema information including all available tables, columns, and data types, see the Schema Reference.

SQL Reference

The Micromegas analytics service is built on Apache DataFusion. For SQL syntax and functions, see the Apache DataFusion SQL Reference.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

micromegas-0.20.0.tar.gz (31.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

micromegas-0.20.0-py3-none-any.whl (34.4 kB view details)

Uploaded Python 3

File details

Details for the file micromegas-0.20.0.tar.gz.

File metadata

  • Download URL: micromegas-0.20.0.tar.gz
  • Upload date:
  • Size: 31.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.1.3 CPython/3.12.3 Linux/6.6.87.2-microsoft-standard-WSL2

File hashes

Hashes for micromegas-0.20.0.tar.gz
Algorithm Hash digest
SHA256 7e05b056979d3cc2f69b1635375f0d0078d463f97f190d9a266a5ad06a4bee88
MD5 53aec477b51d3191ed2b32e0811edcd3
BLAKE2b-256 53496138e16da2f1f0df016ce2f8112fa25a6715b5c1a61fe0719fd035158689

See more details on using hashes here.

File details

Details for the file micromegas-0.20.0-py3-none-any.whl.

File metadata

  • Download URL: micromegas-0.20.0-py3-none-any.whl
  • Upload date:
  • Size: 34.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.1.3 CPython/3.12.3 Linux/6.6.87.2-microsoft-standard-WSL2

File hashes

Hashes for micromegas-0.20.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6f8acc5991c92c35a644ff341c34e1f7458abcc239377af58721931481020cb3
MD5 24d8758f1bc8280417c2a4df9c1d88b1
BLAKE2b-256 7876c41e773a26b09be09bb632ebd593c73b166bc832beef7306f8491309673a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page