Python analytics client for the Micromegas observability platform
Project description
Micromegas
Python analytics client for https://github.com/madesroches/micromegas/
📖 Complete Python API Documentation - Comprehensive guide with all methods, examples, and advanced patterns
Example usage
Query the 2 most recent log entries from the flightsql service
import datetime
import micromegas
# Connect to local server
client = micromegas.connect()
sql = """
SELECT time, process_id, level, target, msg
FROM log_entries
WHERE level <= 4
AND exe LIKE '%flight%'
ORDER BY time DESC
LIMIT 2
"""
now = datetime.datetime.now(datetime.timezone.utc)
begin = now - datetime.timedelta(minutes=2)
end = now
df = client.query(sql, begin, end)
print(df)
| time | process_id | level | target | msg | |
|---|---|---|---|---|---|
| 0 | 2024-10-03 18:17:56.087543714+00:00 | 1db06afc-1c88-47d1-81b3-f398c5f93616 | 4 | acme_telemetry::trace_middleware | response status=200 OK uri=/analytics/query |
| 1 | 2024-10-03 18:17:53.924037729+00:00 | 1db06afc-1c88-47d1-81b3-f398c5f93616 | 4 | micromegas_analytics::lakehouse::query | query sql= |
| SELECT time, process_id, level, target, msg | |||||
| FROM log_entries | |||||
| WHERE level <= 4 | |||||
| AND exe LIKE '%analytics%' | |||||
| ORDER BY time DESC | |||||
| LIMIT 2 |
Query the 10 slowest top level spans in a trace within a specified time window
import datetime
import micromegas
client = micromegas.connect()
# First find a stream ID
end = datetime.datetime.now(datetime.timezone.utc)
begin = end - datetime.timedelta(hours=1)
streams = client.query_streams(begin, end, limit=1)
if not streams.empty:
stream_id = streams['stream_id'].iloc[0]
sql = """
SELECT begin, end, duration, name
FROM view_instance('thread_spans', '{}')
WHERE depth=1
ORDER BY duration DESC
LIMIT 10
""".format(stream_id)
spans = client.query(sql, begin, end)
print(spans)
| begin | end | duration | name | |
|---|---|---|---|---|
| 0 | 2024-10-03 18:00:59.308952900+00:00 | 2024-10-03 18:00:59.371890+00:00 | 62937100 | FEngineLoop::Tick |
| 1 | 2024-10-03 18:00:58.752476800+00:00 | 2024-10-03 18:00:58.784389+00:00 | 31912200 | FEngineLoop::Tick |
| 2 | 2024-10-03 18:00:58.701507300+00:00 | 2024-10-03 18:00:58.731479500+00:00 | 29972200 | FEngineLoop::Tick |
| 3 | 2024-10-03 18:00:59.766343100+00:00 | 2024-10-03 18:00:59.792513700+00:00 | 26170600 | FEngineLoop::Tick |
| 4 | 2024-10-03 18:00:59.282902100+00:00 | 2024-10-03 18:00:59.308952500+00:00 | 26050400 | FEngineLoop::Tick |
| 5 | 2024-10-03 18:00:59.816034500+00:00 | 2024-10-03 18:00:59.841376900+00:00 | 25342400 | FEngineLoop::Tick |
| 6 | 2024-10-03 18:00:58.897813100+00:00 | 2024-10-03 18:00:58.922769700+00:00 | 24956600 | FEngineLoop::Tick |
| 7 | 2024-10-03 18:00:59.860637+00:00 | 2024-10-03 18:00:59.885523700+00:00 | 24886700 | FEngineLoop::Tick |
| 8 | 2024-10-03 18:00:58.630051300+00:00 | 2024-10-03 18:00:58.654871500+00:00 | 24820200 | FEngineLoop::Tick |
| 9 | 2024-10-03 18:00:57.952279800+00:00 | 2024-10-03 18:00:57.977024+00:00 | 24744200 | FEngineLoop::Tick |
Quick Start
For a complete getting started guide, see the Python API Documentation.
Schema Reference
For complete schema information including all available tables, columns, and data types, see the Schema Reference.
SQL Reference
The Micromegas analytics service is built on Apache DataFusion. For SQL syntax and functions, see the Apache DataFusion SQL Reference.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file micromegas-0.20.0.tar.gz.
File metadata
- Download URL: micromegas-0.20.0.tar.gz
- Upload date:
- Size: 31.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/2.1.3 CPython/3.12.3 Linux/6.6.87.2-microsoft-standard-WSL2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
7e05b056979d3cc2f69b1635375f0d0078d463f97f190d9a266a5ad06a4bee88
|
|
| MD5 |
53aec477b51d3191ed2b32e0811edcd3
|
|
| BLAKE2b-256 |
53496138e16da2f1f0df016ce2f8112fa25a6715b5c1a61fe0719fd035158689
|
File details
Details for the file micromegas-0.20.0-py3-none-any.whl.
File metadata
- Download URL: micromegas-0.20.0-py3-none-any.whl
- Upload date:
- Size: 34.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/2.1.3 CPython/3.12.3 Linux/6.6.87.2-microsoft-standard-WSL2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
6f8acc5991c92c35a644ff341c34e1f7458abcc239377af58721931481020cb3
|
|
| MD5 |
24d8758f1bc8280417c2a4df9c1d88b1
|
|
| BLAKE2b-256 |
7876c41e773a26b09be09bb632ebd593c73b166bc832beef7306f8491309673a
|