Skip to main content

tiny abstract data type on python

Project description

how to use

## create Type

>>> from miniadt import ADTTypeProvider
>>> TreeType = ADTTypeProvider("Tree")

>>> Node = TreeType("Node", "e children")
>>> Leaf = TreeType("Leaf", "e")


## printing value

>>> Leaf(e=10)
Leaf(e=10)
>>> Node(e=10, children=[Leaf(e=20)])
Node(e=10, children=[Leaf(e=20)])


## use pattern match

>>> @TreeType.match
... class depth(object):
...     def Node(e, children):
...         return max(depth(e)for e in children) + 1
...
...     def Leaf(e):
...         return 1

>>> depth(Leaf(e=10))
1

>>> depth(Node(e=10, children=[Leaf(e=20), Node(e=30, children=[Leaf(e=40)])]))
3

miniadt has comprehensive check function.

## not comprehensive definition on pattern matching function error is occur

### 1. lack of dispatch andidates
>>> class invalid_dispatch(object):
...     def Node(e, children):
...         return "foo"

>>> TreeType.match(invalid_dispatch)
Traceback (most recent call last):
 ...
miniadt.NotComprehensive: Leaf is not found. expected=['Node', 'Leaf']


### 2. dispatch function's arguments are invalid.
>>> class invalid_dispatch2(object):
...     def Node(e):  ## correct argsspec is "e, children"
...         return "foo"
...     def Leaf(e):
...         return "foo"

>>> TreeType.match(invalid_dispatch2)
Traceback (most recent call last):
 ...
miniadt.NotComprehensive: on Tree.Node:  expected=['e', 'children'] != actual=['e']

similar functions

  • match

  • match_instance

  • classify

from miniadt import ADTTypeProvider
Tree = ADTTypeProvider("Tree")
Node = Tree("Node", "e children")
Leaf = Tree("Leaf", "e")

print(Leaf(e=10))  # => Leaf(e=10)
print(Node(e=10, children=[Leaf(e=20)]))  # => Node(e=10, children=[Leaf(e=20)])


@Tree.match
class depth(object):
    def Leaf(e):
        return 1

    def Node(e, children):
        return max(depth(e) for e in children) + 1


print(depth(Leaf(e=10)))  # => 10
print(depth(Node(e=10, children=[Leaf(e=20)])))  # 2


@Tree.match_instance
class Applicator(object):
    def __init__(self, name):
        self.name = name

    def Leaf(self, e):
        return self.name

    def Node(self, e, children):
        return [self.name, [self(x) for x in children]]

print(Applicator("foo")(Leaf(e=10)))  # => foo
print(Applicator("foo")(Node(e=10, children=[Leaf(e=20)])))  # => ['foo', ['foo']]


@Tree.classify
class ToDict(object):
    def Leaf(self, leaf):
        return leaf.e

    def Node(self, node):
        return {"e": node.e, "children": [self(e) for e in node.children]}

todict = ToDict()
print(todict(Leaf(e=10)))  # => 10
print(todict(Node(e=10, children=[Leaf(e=20)])))  # => {'e': 10, 'children': [20]}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

miniadt-0.4.0.tar.gz (5.9 kB view details)

Uploaded Source

File details

Details for the file miniadt-0.4.0.tar.gz.

File metadata

  • Download URL: miniadt-0.4.0.tar.gz
  • Upload date:
  • Size: 5.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for miniadt-0.4.0.tar.gz
Algorithm Hash digest
SHA256 ed46c1a676be64f33dd47797929938286236a40eff8f9dca095d6b7fb4ca4c48
MD5 550277f7b4052cdd5fcbfbb9736ff09c
BLAKE2b-256 eca7fe66caed24e82e4e01d7164aa99eec8db2f02dc16451df0ec736ecdc992b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page