Skip to main content

Handle Missing Data By Either Dropping Rows/Columns, Forward/Backward Filling or Imputing with Mean, Median or Mode

Project description

Library for Handling Missing Data

PROJECT 3, UCS633 - Data Analysis and Visualization
Navkiran Singh  
COE17
Roll number: 101703365

Takes two inputs - filename of input csv, intended filename of output csv.

Two optional arguments - which must be provided together or left out.

Resulting csv is saved with the name you provide.

Installation

pip install missing_data_navkiran

Recommended - test in a virtual environment.

Use via command line

Defaults are drop NaN with parameter along = 0 (drops rows containing NaN)

missing_data_navkiran_cli in.csv out.csv

Drop rows with NaN missing_data_navkiran_cli in.csv out.csv DROP 0

Drop columns with NaN missing_data_navkiran_cli in.csv out.csv DROP 1

Forward filling missing_data_navkiran_cli in.csv out.csv FILL 0

Backward filling missing_data_navkiran_cli in.csv out.csv FILL 1

Imputing with mean missing_data_navkiran_cli in.csv out.csv IMPUTE 0

Imputing with median missing_data_navkiran_cli in.csv out.csv IMPUTE 1

Imputing with mode missing_data_navkiran_cli in.csv out.csv IMPUTE 2

First argument after outcli is the input csv filename from which the dataset is extracted. The second argument is for storing the final dataset after processing.

Use in .py script

from missing_data_navkiran import dropval,filler,impute
input_df = pd.read_csv('in.csv')
output_df = dropval(input_df,along=0)
# Or
output_df = filler(input_df,1)
# Or
output_df = impute(input_df,1)

There are also stand alone functions to fill numerical data and fill categorical data.

from missing_data_navkiran import fill_numerical,fill_categorical
fill_numerical(input_df,list_of_numerical_columns)
fill_categorical(input_df,list_of_categorical_columns)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

missing_data_navkiran-1.0.0.tar.gz (3.0 kB view details)

Uploaded Source

Built Distribution

missing_data_navkiran-1.0.0-py3-none-any.whl (4.5 kB view details)

Uploaded Python 3

File details

Details for the file missing_data_navkiran-1.0.0.tar.gz.

File metadata

  • Download URL: missing_data_navkiran-1.0.0.tar.gz
  • Upload date:
  • Size: 3.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.5

File hashes

Hashes for missing_data_navkiran-1.0.0.tar.gz
Algorithm Hash digest
SHA256 8e421204e181b9e04b77613fe9127143b59332acd24a98bced386c158341ebec
MD5 416a6c9c3f22198c66fe68c30ecfca53
BLAKE2b-256 f6a8c3ca793726568462f79507c183f40576248c703ebfbca89de2ea29b463d0

See more details on using hashes here.

File details

Details for the file missing_data_navkiran-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: missing_data_navkiran-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 4.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.5

File hashes

Hashes for missing_data_navkiran-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8bde602269be885d97a1ae83416f81975c57b6109fe6087b35ef60d71643e732
MD5 747311eda49c3fcc71990d6772e08b4c
BLAKE2b-256 0b97c4409be484c87445ce936ad4e4cddb8bc51338bd719f986129341fbcb5cc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page