Skip to main content

An extantion library for creatind reports for MLDev

Project description

MLDev Reporting

Welcome to MLDev reporting - library for creating html reports for your experiment. The library provides functionaity for creating reports using Markdown templates and data from your experiment.

Start creating insightful reports today and unlock a clearer understanding of your ML experiments with MLDev reporting.

User Guide

First Step

Install MLDev Reporting using pip with comand

pip install mldev_reporting

Don't forget to add MLDev Reorting to your .mldev/stages/__init__.py file

import mldev_reporting

Second Step

Create an experement using experiment.yml

pipeline: !GenericPipeline
  runs:
    - !BasicStage
      name: report

      env:
        PYTHONPATH: '${env.PYTHONPATH}:./.mldev'

      script:
        - mldev run -f ./report.yml

Third Step

Create a report.yml to configire your report

report: &report !Report
  name: "index"
  output_dir: "light_report"
  template: "./template.md"
  theme: "light"
  lang: "ru"
  report_model:


pipeline: !GenericPipeline
  runs:
    - *report

name is the name of your html file. output_dir is a folder where your report will be located. template is a link to your tamplate file. theme is a theme of your report. It can be light | dark | cards. lang is the report language. It can be ru or en. report_model is where your report data will go.

Fourth Step

Create a template for the report. repo is an object wrom with you can access your report data

# Me cool report

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla sem elit, tincidunt {{repo.data.result}} consectetur aliquam eget, ornare eget nunc. Aliquam erat purus, rutrum in erat nec, sodales commodo augue. Nullam ante nibh, accumsan sit amet eleifend nec, porttitor vel tellus. Sed dapibus at sapien vel mattis. Ut commodo quam tortor, quis porta erat convallis quis.

## Subtitle 1
{{repo.table}}

## Subtitle 2
{{repo.graphic}}

Fifth Step

Specify your report data. You can do it ather by hand or by loading data from file using !LoadFile

loadfile: &load_json_file !LoadFile
  url: "index.json"

loadfile: &load_cvs_file !LoadFile
  url: "index.csv"

Now you can add your data to report_model

report: &report !Report
  name: "index"
  output_dir: "light_report"
  template: "./template.md"
  theme: "light"
  lang: "ru"
  report_model:
    data: *load_json_file

To create table use this comands

report: &report !Report
  name: "index"
  output_dir: "light_report"
  template: "./template.md"
  theme: "light"
  lang: "ru"
  report_model:
    data: *load_json_file
    table: !Table
      title: "Example Table"
      data: *load_cvs_file

To create graphic use this comands

report: &report !Report
  name: "index"
  output_dir: "light_report"
  template: "./template.md"
  theme: "light"
  lang: "ru"
  report_model:
    data: *load_json_file
    graphic: !Graphic
      datasets:
        - dataset: *load_cvs_file
          x: "x_axis"
          y: "y_axis"
          name: "Example Graphic"
          graphic_type: "line"

Sixth Step

Run the following comand to generate your report

mldev run -f experiment.yml

Documentation

Report Class

Field name Type Values Default Value
name string Report file name Required
output_dir string Path to the folder where the report will be stored Required
template string Layout file path Required
report_model object Report data Required
theme string Topic light
lang string Language en

Table class

Field name Type Values Default Value
title string Table name Required
headers string / array of strings Object key if json file is used / Table column headers Optional
rows string / array of arrays of strings Object key if json file is used / Table rows Optional
data link to data from file Data from a file in json or csv format Optional
widths string Column width as a percentage Optional
header_rows Integer Line number to be used as header Optional

Class Graphic

Field name Type Values Default Value
datasets array Graph Datasets Required
config object Graph Configuration Empty object

More detailed information about the datasets can be found on the library page.

LoadFile class

Field name Type Values Default Value
url string File path Required
filter_fields string array A set of keys whose values ​​will be filtered (for json) Optional
filter_columns string array A set of columns whose values ​​will be filtered (for csv) Optional

Contributing

Please check the CONTRIBUTING.md guide if you'd like to participate in the project, ask a question or give a suggestion.

License

The software is licensed under Apache 2.0 license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mldev_reporting-0.1.1.tar.gz (40.3 kB view details)

Uploaded Source

Built Distribution

mldev_reporting-0.1.1-py3-none-any.whl (44.5 kB view details)

Uploaded Python 3

File details

Details for the file mldev_reporting-0.1.1.tar.gz.

File metadata

  • Download URL: mldev_reporting-0.1.1.tar.gz
  • Upload date:
  • Size: 40.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.0rc1

File hashes

Hashes for mldev_reporting-0.1.1.tar.gz
Algorithm Hash digest
SHA256 bf451b8911e8efb7c414dd89d8cb7518675bf82385f8bedcd209806d1a465726
MD5 0ef8b3138033de296d960bb27215ad3e
BLAKE2b-256 e8c6cb0a45be94c21db69d263ef6e950517cfac3b3ddfa523826229a98f90af3

See more details on using hashes here.

File details

Details for the file mldev_reporting-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: mldev_reporting-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 44.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.0rc1

File hashes

Hashes for mldev_reporting-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 70ba5d5fdc8552209b0c5455b2718d86837d251014c5af12842f665607f7d4c9
MD5 92155889d92da79f4f950549d3829794
BLAKE2b-256 9f619997025b378802a44f0a1e75d524486553ae1cb3eba8fc2cd5010dbf8a55

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page