Vision Language Models (VLMs) and Omni Models (Vision, Audio and Video support) on Apple silicon with MLX and the Hugging Face Hub
Project description
MLX-VLM
MLX-VLM is a package for inference and fine-tuning of Vision Language Models (VLMs) and Omni Models (VLMs with audio and video support) on your Mac using MLX.
Table of Contents
Installation
The easiest way to get started is to install the mlx-vlm
package using pip:
pip install -U mlx-vlm
Usage
Command Line Interface (CLI)
Generate output from a model using the CLI:
# Image generation
mlx_vlm.generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --temperature 0.0 --image http://images.cocodataset.org/val2017/000000039769.jpg
# Audio generation (New)
mlx_vlm.generate --model mlx-community/gemma-3n-E2B-it-4bit --max-tokens 100 --prompt "Describe what you hear" --audio /path/to/audio.wav
# Multi-modal generation (Image + Audio)
mlx_vlm.generate --model mlx-community/gemma-3n-E2B-it-4bit --max-tokens 100 --prompt "Describe what you see and hear" --image /path/to/image.jpg --audio /path/to/audio.wav
Chat UI with Gradio
Launch a chat interface using Gradio:
mlx_vlm.chat_ui --model mlx-community/Qwen2-VL-2B-Instruct-4bit
Python Script
Here's an example of how to use MLX-VLM in a Python script:
import mlx.core as mx
from mlx_vlm import load, generate
from mlx_vlm.prompt_utils import apply_chat_template
from mlx_vlm.utils import load_config
# Load the model
model_path = "mlx-community/Qwen2-VL-2B-Instruct-4bit"
model, processor = load(model_path)
config = load_config(model_path)
# Prepare input
image = ["http://images.cocodataset.org/val2017/000000039769.jpg"]
# image = [Image.open("...")] can also be used with PIL.Image.Image objects
prompt = "Describe this image."
# Apply chat template
formatted_prompt = apply_chat_template(
processor, config, prompt, num_images=len(image)
)
# Generate output
output = generate(model, processor, formatted_prompt, image, verbose=False)
print(output)
Audio Example
from mlx_vlm import load, generate
from mlx_vlm.prompt_utils import apply_chat_template
from mlx_vlm.utils import load_config
# Load model with audio support
model_path = "mlx-community/gemma-3n-E2B-it-4bit"
model, processor = load(model_path)
config = model.config
# Prepare audio input
audio = ["/path/to/audio1.wav", "/path/to/audio2.mp3"]
prompt = "Describe what you hear in these audio files."
# Apply chat template with audio
formatted_prompt = apply_chat_template(
processor, config, prompt, num_audios=len(audio)
)
# Generate output with audio
output = generate(model, processor, formatted_prompt, audio=audio, verbose=False)
print(output)
Multi-Modal Example (Image + Audio)
from mlx_vlm import load, generate
from mlx_vlm.prompt_utils import apply_chat_template
from mlx_vlm.utils import load_config
# Load multi-modal model
model_path = "mlx-community/gemma-3n-E2B-it-4bit"
model, processor = load(model_path)
config = model.config
# Prepare inputs
image = ["/path/to/image.jpg"]
audio = ["/path/to/audio.wav"]
prompt = ""
# Apply chat template
formatted_prompt = apply_chat_template(
processor, config, prompt,
num_images=len(image),
num_audios=len(audio)
)
# Generate output
output = generate(model, processor, formatted_prompt, image, audio=audio, verbose=False)
print(output)
Server (FastAPI)
Start the server:
mlx_vlm.server
The server provides multiple endpoints for different use cases and supports dynamic model loading/unloading with caching (one model at a time).
Available Endpoints
/generate
- Main generation endpoint with support for images, audio, and text/chat
- Chat-style interaction endpoint/responses
- OpenAI-compatible endpoint/health
- Check server status/unload
- Unload current model from memory
Usage Examples
Basic Image Generation
curl -X POST "http://localhost:8000/generate" \
-H "Content-Type: application/json" \
-d '{
"model": "mlx-community/Qwen2.5-VL-32B-Instruct-8bit",
"image": ["/path/to/repo/examples/images/renewables_california.png"],
"prompt": "This is today'\''s chart for energy demand in California. Can you provide an analysis of the chart and comment on the implications for renewable energy in California?",
"system": "You are a helpful assistant.",
"stream": true,
"max_tokens": 1000
}'
Audio Support (New)
curl -X POST "http://localhost:8000/generate" \
-H "Content-Type: application/json" \
-d '{
"model": "mlx-community/gemma-3n-E2B-it-4bit",
"audio": ["/path/to/audio1.wav", "https://example.com/audio2.mp3"],
"prompt": "Describe what you hear in these audio files",
"stream": true,
"max_tokens": 500
}'
Multi-Modal (Image + Audio)
curl -X POST "http://localhost:8000/generate" \
-H "Content-Type: application/json" \
-d '{
"model": "mlx-community/gemma-3n-E2B-it-4bit",
"image": ["/path/to/image.jpg"],
"audio": ["/path/to/audio.wav"],
"prompt": "",
"max_tokens": 1000
}'
Chat Endpoint
curl -X POST "http://localhost:8000/chat" \
-H "Content-Type: application/json" \
-d '{
"model": "mlx-community/Qwen2-VL-2B-Instruct-4bit",
"messages": [
{
"role": "user",
"content": "What is in this image?",
"images": ["/path/to/image.jpg"]
}
],
"max_tokens": 100
}'
OpenAI-Compatible Endpoint
curl -X POST "http://localhost:8000/responses" \
-H "Content-Type: application/json" \
-d '{
"model": "mlx-community/Qwen2-VL-2B-Instruct-4bit",
"messages": [
{
"role": "user",
"content": [
{"type": "input_text", "text": "What is in this image?"},
{"type": "input_image", "image": "/path/to/image.jpg"}
]
}
],
"max_tokens": 100
}'
Request Parameters
model
: Model identifier (required)prompt
: Text prompt for generationimage
: List of image URLs or local paths (optional)audio
: List of audio URLs or local paths (optional, new)system
: System prompt (optional)messages
: Chat messages for chat/OpenAI endpointsmax_tokens
: Maximum tokens to generatetemperature
: Sampling temperaturetop_p
: Top-p sampling parameterstream
: Enable streaming responses
Multi-Image Chat Support
MLX-VLM supports analyzing multiple images simultaneously with select models. This feature enables more complex visual reasoning tasks and comprehensive analysis across multiple images in a single conversation.
Usage Examples
Python Script
from mlx_vlm import load, generate
from mlx_vlm.prompt_utils import apply_chat_template
from mlx_vlm.utils import load_config
model_path = "mlx-community/Qwen2-VL-2B-Instruct-4bit"
model, processor = load(model_path)
config = model.config
images = ["path/to/image1.jpg", "path/to/image2.jpg"]
prompt = "Compare these two images."
formatted_prompt = apply_chat_template(
processor, config, prompt, num_images=len(images)
)
output = generate(model, processor, formatted_prompt, images, verbose=False)
print(output)
Command Line
mlx_vlm.generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --prompt "Compare these images" --image path/to/image1.jpg path/to/image2.jpg
Video Understanding
MLX-VLM also supports video analysis such as captioning, summarization, and more, with select models.
Supported Models
The following models support video chat:
- Qwen2-VL
- Qwen2.5-VL
- Idefics3
- LLaVA
With more coming soon.
Usage Examples
Command Line
mlx_vlm.video_generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --prompt "Describe this video" --video path/to/video.mp4 --max-pixels 224 224 --fps 1.0
These examples demonstrate how to use multiple images with MLX-VLM for more complex visual reasoning tasks.
Fine-tuning
MLX-VLM supports fine-tuning models with LoRA and QLoRA.
LoRA & QLoRA
To learn more about LoRA, please refer to the LoRA.md file.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mlx_vlm-0.3.1.tar.gz
.
File metadata
- Download URL: mlx_vlm-0.3.1.tar.gz
- Upload date:
- Size: 227.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.9.23
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
10044d5d3ab9bbb0bf0f4cd836a39fd8751bac44452a2a6735dc98925fd228fb
|
|
MD5 |
d6d72047e12fcedfeec57e71f401726a
|
|
BLAKE2b-256 |
dec2f8a664ba84159bdf4ee89511ffe603e3a98fd2e50fabb3b4d01829246793
|
File details
Details for the file mlx_vlm-0.3.1-py3-none-any.whl
.
File metadata
- Download URL: mlx_vlm-0.3.1-py3-none-any.whl
- Upload date:
- Size: 282.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.9.23
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
9de5063149192f4801c2349d63a2949090d989d79aa72821f42afaae9d775f07
|
|
MD5 |
56d08ade8746ca0897d26df25875cc69
|
|
BLAKE2b-256 |
ceff7a24cb5a70482113f752ffa89b942d1c7e3710c99aa7eeebd6d4d0d34f7a
|