Skip to main content

Vision Language Models (VLMs) and Omni Models (Vision, Audio and Video support) on Apple silicon with MLX and the Hugging Face Hub

Project description

Upload Python Package

MLX-VLM

MLX-VLM is a package for inference and fine-tuning of Vision Language Models (VLMs) and Omni Models (VLMs with audio and video support) on your Mac using MLX.

Table of Contents

Installation

The easiest way to get started is to install the mlx-vlm package using pip:

pip install -U mlx-vlm

Usage

Command Line Interface (CLI)

Generate output from a model using the CLI:

# Image generation
mlx_vlm.generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --temperature 0.0 --image http://images.cocodataset.org/val2017/000000039769.jpg

# Audio generation (New)
mlx_vlm.generate --model mlx-community/gemma-3n-E2B-it-4bit --max-tokens 100 --prompt "Describe what you hear" --audio /path/to/audio.wav

# Multi-modal generation (Image + Audio)
mlx_vlm.generate --model mlx-community/gemma-3n-E2B-it-4bit --max-tokens 100 --prompt "Describe what you see and hear" --image /path/to/image.jpg --audio /path/to/audio.wav

Chat UI with Gradio

Launch a chat interface using Gradio:

mlx_vlm.chat_ui --model mlx-community/Qwen2-VL-2B-Instruct-4bit

Python Script

Here's an example of how to use MLX-VLM in a Python script:

import mlx.core as mx
from mlx_vlm import load, generate
from mlx_vlm.prompt_utils import apply_chat_template
from mlx_vlm.utils import load_config

# Load the model
model_path = "mlx-community/Qwen2-VL-2B-Instruct-4bit"
model, processor = load(model_path)
config = load_config(model_path)

# Prepare input
image = ["http://images.cocodataset.org/val2017/000000039769.jpg"]
# image = [Image.open("...")] can also be used with PIL.Image.Image objects
prompt = "Describe this image."

# Apply chat template
formatted_prompt = apply_chat_template(
    processor, config, prompt, num_images=len(image)
)

# Generate output
output = generate(model, processor, formatted_prompt, image, verbose=False)
print(output)

Audio Example

from mlx_vlm import load, generate
from mlx_vlm.prompt_utils import apply_chat_template
from mlx_vlm.utils import load_config

# Load model with audio support
model_path = "mlx-community/gemma-3n-E2B-it-4bit"
model, processor = load(model_path)
config = model.config

# Prepare audio input
audio = ["/path/to/audio1.wav", "/path/to/audio2.mp3"]
prompt = "Describe what you hear in these audio files."

# Apply chat template with audio
formatted_prompt = apply_chat_template(
    processor, config, prompt, num_audios=len(audio)
)

# Generate output with audio
output = generate(model, processor, formatted_prompt, audio=audio, verbose=False)
print(output)

Multi-Modal Example (Image + Audio)

from mlx_vlm import load, generate
from mlx_vlm.prompt_utils import apply_chat_template
from mlx_vlm.utils import load_config

# Load multi-modal model
model_path = "mlx-community/gemma-3n-E2B-it-4bit"
model, processor = load(model_path)
config = model.config

# Prepare inputs
image = ["/path/to/image.jpg"]
audio = ["/path/to/audio.wav"]
prompt = ""

# Apply chat template
formatted_prompt = apply_chat_template(
    processor, config, prompt,
    num_images=len(image),
    num_audios=len(audio)
)

# Generate output
output = generate(model, processor, formatted_prompt, image, audio=audio, verbose=False)
print(output)

Server (FastAPI)

Start the server:

mlx_vlm.server

The server provides multiple endpoints for different use cases and supports dynamic model loading/unloading with caching (one model at a time).

Available Endpoints

  • /generate - Main generation endpoint with support for images, audio, and text
  • /chat - Chat-style interaction endpoint
  • /responses - OpenAI-compatible endpoint
  • /health - Check server status
  • /unload - Unload current model from memory

Usage Examples

Basic Image Generation
curl -X POST "http://localhost:8000/generate" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "mlx-community/Qwen2.5-VL-32B-Instruct-8bit",
    "image": ["/path/to/repo/examples/images/renewables_california.png"],
    "prompt": "This is today'\''s chart for energy demand in California. Can you provide an analysis of the chart and comment on the implications for renewable energy in California?",
    "system": "You are a helpful assistant.",
    "stream": true,
    "max_tokens": 1000
  }'
Audio Support (New)
curl -X POST "http://localhost:8000/generate" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "mlx-community/gemma-3n-E2B-it-4bit",
    "audio": ["/path/to/audio1.wav", "https://example.com/audio2.mp3"],
    "prompt": "Describe what you hear in these audio files",
    "stream": true,
    "max_tokens": 500
  }'
Multi-Modal (Image + Audio)
curl -X POST "http://localhost:8000/generate" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "mlx-community/gemma-3n-E2B-it-4bit",
    "image": ["/path/to/image.jpg"],
    "audio": ["/path/to/audio.wav"],
    "prompt": "",
    "max_tokens": 1000
  }'
Chat Endpoint
curl -X POST "http://localhost:8000/chat" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "mlx-community/Qwen2-VL-2B-Instruct-4bit",
    "messages": [
      {
        "role": "user",
        "content": "What is in this image?",
        "images": ["/path/to/image.jpg"]
      }
    ],
    "max_tokens": 100
  }'
OpenAI-Compatible Endpoint
curl -X POST "http://localhost:8000/responses" \
  -H "Content-Type: application/json" \
  -d '{
    "model": "mlx-community/Qwen2-VL-2B-Instruct-4bit",
    "messages": [
      {
        "role": "user",
        "content": [
          {"type": "input_text", "text": "What is in this image?"},
          {"type": "input_image", "image": "/path/to/image.jpg"}
        ]
      }
    ],
    "max_tokens": 100
  }'

Request Parameters

  • model: Model identifier (required)
  • prompt: Text prompt for generation
  • image: List of image URLs or local paths (optional)
  • audio: List of audio URLs or local paths (optional, new)
  • system: System prompt (optional)
  • messages: Chat messages for chat/OpenAI endpoints
  • max_tokens: Maximum tokens to generate
  • temperature: Sampling temperature
  • top_p: Top-p sampling parameter
  • stream: Enable streaming responses

Multi-Image Chat Support

MLX-VLM supports analyzing multiple images simultaneously with select models. This feature enables more complex visual reasoning tasks and comprehensive analysis across multiple images in a single conversation.

Usage Examples

Python Script

from mlx_vlm import load, generate
from mlx_vlm.prompt_utils import apply_chat_template
from mlx_vlm.utils import load_config

model_path = "mlx-community/Qwen2-VL-2B-Instruct-4bit"
model, processor = load(model_path)
config = model.config

images = ["path/to/image1.jpg", "path/to/image2.jpg"]
prompt = "Compare these two images."

formatted_prompt = apply_chat_template(
    processor, config, prompt, num_images=len(images)
)

output = generate(model, processor, formatted_prompt, images, verbose=False)
print(output)

Command Line

mlx_vlm.generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --prompt "Compare these images" --image path/to/image1.jpg path/to/image2.jpg

Video Understanding

MLX-VLM also supports video analysis such as captioning, summarization, and more, with select models.

Supported Models

The following models support video chat:

  1. Qwen2-VL
  2. Qwen2.5-VL
  3. Idefics3
  4. LLaVA

With more coming soon.

Usage Examples

Command Line

mlx_vlm.video_generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --prompt "Describe this video" --video path/to/video.mp4 --max-pixels 224 224 --fps 1.0

These examples demonstrate how to use multiple images with MLX-VLM for more complex visual reasoning tasks.

Fine-tuning

MLX-VLM supports fine-tuning models with LoRA and QLoRA.

LoRA & QLoRA

To learn more about LoRA, please refer to the LoRA.md file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlx_vlm-0.3.1.tar.gz (227.3 kB view details)

Uploaded Source

Built Distribution

mlx_vlm-0.3.1-py3-none-any.whl (282.9 kB view details)

Uploaded Python 3

File details

Details for the file mlx_vlm-0.3.1.tar.gz.

File metadata

  • Download URL: mlx_vlm-0.3.1.tar.gz
  • Upload date:
  • Size: 227.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for mlx_vlm-0.3.1.tar.gz
Algorithm Hash digest
SHA256 10044d5d3ab9bbb0bf0f4cd836a39fd8751bac44452a2a6735dc98925fd228fb
MD5 d6d72047e12fcedfeec57e71f401726a
BLAKE2b-256 dec2f8a664ba84159bdf4ee89511ffe603e3a98fd2e50fabb3b4d01829246793

See more details on using hashes here.

File details

Details for the file mlx_vlm-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: mlx_vlm-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 282.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for mlx_vlm-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9de5063149192f4801c2349d63a2949090d989d79aa72821f42afaae9d775f07
MD5 56d08ade8746ca0897d26df25875cc69
BLAKE2b-256 ceff7a24cb5a70482113f752ffa89b942d1c7e3710c99aa7eeebd6d4d0d34f7a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page