Skip to main content

Library for Motion Capture data processing and analysis

Project description

MoCapLib

MoCapLib: Library for Motion Capture data processing and analysis

Description

The aim of this repository is to provide a simple Python-based library for motion capture data processing and analysis.

Installation

MoCapLib can be installed from PyPI using pip on Python>=3.7.

pip install mocaplib

Usage

Currently, there is only one sub-module availabe, mocaplib.gapfill.

Rows of ndarray values for marker coordinates should be filled with numpy.nan for occluded (blocked) frames.

import mocaplib.gapfill as gf

# numpy is required in order to provide necessary markers' coordinate values
import numpy as np

# 'fill_marker_gap_interp()' function will update the given ndarray by filling its gaps using bspline interpolation
# 'tgt_mkr_pos0': a 2D (n, 3) ndarray of a target marker position to fill the gaps
# 'n' is the total number of frames
tgt_mkr_pos0 = np.array((n, 3), dtype=np.float32)
# 'ret0': either True or False, True if there is any frame updated, False if there is no frame updated
# 'updated_frs_mask0': a boolean ndarray to indicate which frames are updated
ret0, updated_frs_mask0 = gf.fill_marker_gap_interp(tgt_mkr_pos0)

# 'fill_marker_gap_pattern()' function will update the given ndarray by filling its gaps using a donor marker
# 'tgt_mkr_pos1': a 2D (n, 3) ndarray of a target marker position to fill the gaps
# 'n' is the total number of frames
tgt_mkr_pos1 = np.array((n, 3), dtype=np.float32)
# 'dnr_mkr_pos': a 2D (n, 3) ndarray of a donor marker position
# 'n' is the total number of frames
dnr_mkr_pos = np.array((n, 3), dtype=np.float32)
# 'ret1': either True or False, True if there is any frame updated, False if there is no frame updated
# 'updated_frs_mask1': a boolean ndarray to indicate which frames are updated
ret1, updated_frs_mask1 = gf.fill_marker_gap_pattern(tgt_mkr_pos1, dnr_mkr_pos)

# 'fill_marker_gap_rbt()' function will update the given ndarray by filling its gaps using a cluster of 3 markers
# 'tgt_mkr_pos2': a 2D (n, 3) ndarray of a target marker position to fill the gaps
# 'n' is the total number of frames
tgt_mkr_pos2 = np.array((n, 3), dtype=np.float32)
# 'cl_mkr_pos': a 3D (m, n, 3) ndarray of the cluster markers
# 'm' (at least 3) is the number of markers, and 'n' is the total number of frames
cl_mkr_pos = np.array((m, n, 3), dtype=np.float32)
# 'ret2': either True or False, True if there is any frame updated, False if there is no frame updated
# 'updated_frs_mask2': a boolean ndarray to indicate which frames are updated
ret2, updated_frs_mask2 = gf.fill_marker_gap_rbt(tgt_mkr_pos2, cl_mkr_pos)

Dependencies

References

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Built Distribution

mocaplib-0.0.2-py3-none-any.whl (8.0 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page