MODIS Assimilation and Processing Engine
Project description
MODAPE
=====
|CI| |version| |pyversions| |downloads| |license|
.. |CI| image:: https://travis-ci.org/WFP-VAM/modape.svg?branch=master
:target: https://travis-ci.org/WFP-VAM/modape
.. |version| image:: https://img.shields.io/pypi/v/modape.svg
:target: https://pypi.org/project/modape/
.. |pyversions| image:: https://img.shields.io/pypi/pyversions/modape.svg
:target: https://pypi.org/project/modape/
.. |downloads| image:: https://img.shields.io/pypi/dm/modape.svg
:target: https://pypi.org/project/modape/
.. |license| image:: https://img.shields.io/github/license/WFP-VAM/modape.svg
:target: https://github.com/WFP-VAM/modape/blob/master/LICENSE
|
The **M**\ ODIS **A**\ ssimilation and **P**\ rocessing **E**\ ngine combines a state-of-the art whittaker smoother, implemented as fast C-extension through Cython and including a V-curve optimization of the smoothing parameter, with a HDF5 based processing chain optimized for MODIS data.
The sub-module ``modape.whittaker`` includes the following variations of the whittaker smoother with 2nd order differences:
- **ws2d**: Whittaker with fixed smoothing parameter (``s``)
- **ws2doptv**: Whittaker with V-curve optimization of the smoothing parameter (``s``)
- **ws2doptvp**: Whittaker with V-curve optimization of the smoothing parameter (``s``) and expectile smoothing using asymmetric weights
The MODIS processing chain consists of the following executables, which can be called through commandline:
- ``modis_download``: Query and download raw MODIS products (requires Earthdata credentials)
- ``modis_collect``: Collect raw MODIS data into daily datacubes stored in an HDF5 file
- ``modis_smooth``: Smooth, gapfill and interpolate raw MODIS data using the implemented whittaker smoother
- ``modis_window``: Extract mosaic(s) of multiple MODIS tiles, or subset(s) of a global/tiled MODIS product and export it as GeoTIFF raster in WGS1984 coordinate system
Additional executables:
- ``csv_smooth``: Smooth timeseries stored within a CSV file
- ``rts_smooth``: Smooth a series of raster files stored in a local directory
- ``modis_info``: Retrieve metadata from created HDF5 files
- ``modis_product_table``: MODIS Version 6.0 product table
Installation
------------
**Dependencies:**
modape depends on these packages:
- numpy
- gdal
- h5py
- beautifulsoup4
- requests
- progress
- pandas
Some of these packages (eg. GDAL) can be difficult to build, especially on windows machines. In the latter case it's advisable to download an unofficial binary wheel from `Christoph Gohlke's Unofficial Windows Binaries for Python Extension Packages <https://www.lfd.uci.edu/~gohlke/pythonlibs/>`_ and install it locally with ``pip install`` before installing modape.
**Installation from github:**
.. code:: bash
$ git clone https://github.com/WFP-VAM/modape
$ cd modape
$ pip install .
**Installation from PyPi:**
.. code:: bash
$ pip install modape
Bugs, typos & feature requests
-----
If you find a bug, see a typo, have some kind of troubles running the module or just simply want to have a feature added, please `submit an issue! <https://github.com/WFP-VAM/modape/issues/new>`_
Usage tutorial
-----
All executables can be called with a ``-h`` flag for detailed usage.
For a more detailed tutorial on how to use the executables, please visit `WFP-VAM.github.io/modape <https://wfp-vam.github.io/modape/>`_.
CHANGES
-----
- v0.1.2:
- fix issues with pytest and dates in HDF5 for PYTHON 2.7
- v0.1.1:
- minor changes to MANIFEST
- v0.1.0:
- initial release
-----
References:
P. H. C. Eilers, V. Pesendorfer and R. Bonifacio, "Automatic smoothing of remote sensing data," 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Brugge, 2017, pp. 1-3.
doi: 10.1109/Multi-Temp.2017.8076705
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8076705&isnumber=8035194
Core Whittaker function adapted from ``whit2`` function from `R` package `ptw <https://cran.r-project.org/package=ptw>`_:
Bloemberg, T. G. et al. (2010) "Improved Parametric Time Warping for Proteomics", Chemometrics and Intelligent Laboratory Systems, 104 (1), 65-74
Wehrens, R. et al. (2015) "Fast parametric warping of peak lists", Bioinformatics, in press.
-----
Author & maintainer:
Valentin Pesendorfer
valentin.pesendorfer@wfp.org
=====
|CI| |version| |pyversions| |downloads| |license|
.. |CI| image:: https://travis-ci.org/WFP-VAM/modape.svg?branch=master
:target: https://travis-ci.org/WFP-VAM/modape
.. |version| image:: https://img.shields.io/pypi/v/modape.svg
:target: https://pypi.org/project/modape/
.. |pyversions| image:: https://img.shields.io/pypi/pyversions/modape.svg
:target: https://pypi.org/project/modape/
.. |downloads| image:: https://img.shields.io/pypi/dm/modape.svg
:target: https://pypi.org/project/modape/
.. |license| image:: https://img.shields.io/github/license/WFP-VAM/modape.svg
:target: https://github.com/WFP-VAM/modape/blob/master/LICENSE
|
The **M**\ ODIS **A**\ ssimilation and **P**\ rocessing **E**\ ngine combines a state-of-the art whittaker smoother, implemented as fast C-extension through Cython and including a V-curve optimization of the smoothing parameter, with a HDF5 based processing chain optimized for MODIS data.
The sub-module ``modape.whittaker`` includes the following variations of the whittaker smoother with 2nd order differences:
- **ws2d**: Whittaker with fixed smoothing parameter (``s``)
- **ws2doptv**: Whittaker with V-curve optimization of the smoothing parameter (``s``)
- **ws2doptvp**: Whittaker with V-curve optimization of the smoothing parameter (``s``) and expectile smoothing using asymmetric weights
The MODIS processing chain consists of the following executables, which can be called through commandline:
- ``modis_download``: Query and download raw MODIS products (requires Earthdata credentials)
- ``modis_collect``: Collect raw MODIS data into daily datacubes stored in an HDF5 file
- ``modis_smooth``: Smooth, gapfill and interpolate raw MODIS data using the implemented whittaker smoother
- ``modis_window``: Extract mosaic(s) of multiple MODIS tiles, or subset(s) of a global/tiled MODIS product and export it as GeoTIFF raster in WGS1984 coordinate system
Additional executables:
- ``csv_smooth``: Smooth timeseries stored within a CSV file
- ``rts_smooth``: Smooth a series of raster files stored in a local directory
- ``modis_info``: Retrieve metadata from created HDF5 files
- ``modis_product_table``: MODIS Version 6.0 product table
Installation
------------
**Dependencies:**
modape depends on these packages:
- numpy
- gdal
- h5py
- beautifulsoup4
- requests
- progress
- pandas
Some of these packages (eg. GDAL) can be difficult to build, especially on windows machines. In the latter case it's advisable to download an unofficial binary wheel from `Christoph Gohlke's Unofficial Windows Binaries for Python Extension Packages <https://www.lfd.uci.edu/~gohlke/pythonlibs/>`_ and install it locally with ``pip install`` before installing modape.
**Installation from github:**
.. code:: bash
$ git clone https://github.com/WFP-VAM/modape
$ cd modape
$ pip install .
**Installation from PyPi:**
.. code:: bash
$ pip install modape
Bugs, typos & feature requests
-----
If you find a bug, see a typo, have some kind of troubles running the module or just simply want to have a feature added, please `submit an issue! <https://github.com/WFP-VAM/modape/issues/new>`_
Usage tutorial
-----
All executables can be called with a ``-h`` flag for detailed usage.
For a more detailed tutorial on how to use the executables, please visit `WFP-VAM.github.io/modape <https://wfp-vam.github.io/modape/>`_.
CHANGES
-----
- v0.1.2:
- fix issues with pytest and dates in HDF5 for PYTHON 2.7
- v0.1.1:
- minor changes to MANIFEST
- v0.1.0:
- initial release
-----
References:
P. H. C. Eilers, V. Pesendorfer and R. Bonifacio, "Automatic smoothing of remote sensing data," 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Brugge, 2017, pp. 1-3.
doi: 10.1109/Multi-Temp.2017.8076705
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8076705&isnumber=8035194
Core Whittaker function adapted from ``whit2`` function from `R` package `ptw <https://cran.r-project.org/package=ptw>`_:
Bloemberg, T. G. et al. (2010) "Improved Parametric Time Warping for Proteomics", Chemometrics and Intelligent Laboratory Systems, 104 (1), 65-74
Wehrens, R. et al. (2015) "Fast parametric warping of peak lists", Bioinformatics, in press.
-----
Author & maintainer:
Valentin Pesendorfer
valentin.pesendorfer@wfp.org
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
modape-0.1.2.tar.gz
(9.3 MB
view details)
Built Distributions
File details
Details for the file modape-0.1.2.tar.gz
.
File metadata
- Download URL: modape-0.1.2.tar.gz
- Upload date:
- Size: 9.3 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/36.6.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
1e07b40b7712a83c4bb278b3a01469370d47b151e72f55de419b7efb466670d6
|
|
MD5 |
5594ada25be97768236e34f4841e32b4
|
|
BLAKE2b-256 |
7c1ada21b9797fa291deefae426dccc909393ed9a2f0a6f52cedb05b3f846256
|
File details
Details for the file modape-0.1.2-cp36-cp36m-win_amd64.whl
.
File metadata
- Download URL: modape-0.1.2-cp36-cp36m-win_amd64.whl
- Upload date:
- Size: 9.3 MB
- Tags: CPython 3.6m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
e6edce62e7f470c35d6fcb516cd4e2b5659c4c8c338797ccc6ff8529b3b0e40b
|
|
MD5 |
6c61aee3932e7caaa1467b64b3e162c8
|
|
BLAKE2b-256 |
086654bafdd4d1b42dc305f091ef42689ab990b70fa62a2b142cb04c09eea0bf
|
File details
Details for the file modape-0.1.2-cp36-cp36m-win32.whl
.
File metadata
- Download URL: modape-0.1.2-cp36-cp36m-win32.whl
- Upload date:
- Size: 9.3 MB
- Tags: CPython 3.6m, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
a380e6798deb873192ff9bf6a6dec4a8984301d50bdfa2c5d81e1c50d9692288
|
|
MD5 |
dccfc4a0df33cbf0469eb28a9d6a1107
|
|
BLAKE2b-256 |
af8ba2a975140aaef84e40d9e8a08f46c27d6ed8b1675c40d1a7e27ab880e5ba
|
File details
Details for the file modape-0.1.2-cp27-cp27m-win_amd64.whl
.
File metadata
- Download URL: modape-0.1.2-cp27-cp27m-win_amd64.whl
- Upload date:
- Size: 9.3 MB
- Tags: CPython 2.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
e9616ff53428621e0c550ae8d18e16ed7aac6ab035c02ff1581c574649000bc5
|
|
MD5 |
3fc496442bb8f8c8f5f9d49537941d0e
|
|
BLAKE2b-256 |
4e861b2e5c728e8189b5f68708c1e8a10b1fab4f0bc86e784e98ee5518f0110b
|
File details
Details for the file modape-0.1.2-cp27-cp27m-win32.whl
.
File metadata
- Download URL: modape-0.1.2-cp27-cp27m-win32.whl
- Upload date:
- Size: 9.3 MB
- Tags: CPython 2.7m, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
4ee0127ee4f238fb68d93cb9147cf71790a6ace69c3a967fb89de37820225a49
|
|
MD5 |
2519a4c76540bed1aca5ce8238f7920a
|
|
BLAKE2b-256 |
0a0d521e90db840e03f0ad8e9ea2b93238d960d0e59c77717071334692738f07
|