Skip to main content

MODIS Assimilation and Processing Engine

Project description

MODAPE
=====

|CI| |version| |pyversions| |downloads| |license|

.. |CI| image:: https://travis-ci.org/WFP-VAM/modape.svg?branch=master
:target: https://travis-ci.org/WFP-VAM/modape

.. |version| image:: https://img.shields.io/pypi/v/modape.svg
:target: https://pypi.org/project/modape/

.. |pyversions| image:: https://img.shields.io/pypi/pyversions/modape.svg
:target: https://pypi.org/project/modape/

.. |downloads| image:: https://img.shields.io/pypi/dm/modape.svg
:target: https://pypi.org/project/modape/

.. |license| image:: https://img.shields.io/github/license/WFP-VAM/modape.svg
:target: https://github.com/WFP-VAM/modape/blob/master/LICENSE
|

The **M**\ ODIS **A**\ ssimilation and **P**\ rocessing **E**\ ngine combines a state-of-the art whittaker smoother, implemented as fast C-extension through Cython and including a V-curve optimization of the smoothing parameter, with a HDF5 based processing chain optimized for MODIS data.

The sub-module ``modape.whittaker`` includes the following variations of the whittaker smoother with 2nd order differences:

- **ws2d**: Whittaker with fixed smoothing parameter (``s``)
- **ws2doptv**: Whittaker with V-curve optimization of the smoothing parameter (``s``)
- **ws2doptvp**: Whittaker with V-curve optimization of the smoothing parameter (``s``) and expectile smoothing using asymmetric weights

The MODIS processing chain consists of the following executables, which can be called through commandline:

- ``modis_download``: Query and download raw MODIS products (requires Earthdata credentials)
- ``modis_collect``: Collect raw MODIS data into daily datacubes stored in an HDF5 file
- ``modis_smooth``: Smooth, gapfill and interpolate raw MODIS data using the implemented whittaker smoother
- ``modis_window``: Extract mosaic(s) of multiple MODIS tiles, or subset(s) of a global/tiled MODIS product and export it as GeoTIFF raster in WGS1984 coordinate system

Additional executables:

- ``csv_smooth``: Smooth timeseries stored within a CSV file
- ``rts_smooth``: Smooth a series of raster files stored in a local directory
- ``modis_info``: Retrieve metadata from created HDF5 files
- ``modis_product_table``: MODIS Version 6.0 product table


Installation
------------
**Dependencies:**

modape depends on these packages:

- numpy
- gdal
- h5py
- beautifulsoup4
- requests
- progress
- pandas

Some of these packages (eg. GDAL) can be difficult to build, especially on windows machines. In the latter case it's advisable to download an unofficial binary wheel from `Christoph Gohlke's Unofficial Windows Binaries for Python Extension Packages <https://www.lfd.uci.edu/~gohlke/pythonlibs/>`_ and install it locally with ``pip install`` before installing modape.

**Installation from github:**

.. code:: bash

$ git clone https://github.com/WFP-VAM/modape
$ cd modape
$ pip install .

**Installation from PyPi:**

.. code:: bash

$ pip install modape


Bugs, typos & feature requests
-----

If you find a bug, see a typo, have some kind of troubles running the module or just simply want to have a feature added, please `submit an issue! <https://github.com/WFP-VAM/modape/issues/new>`_


Usage tutorial
-----

All executables can be called with a ``-h`` flag for detailed usage.

For a more detailed tutorial on how to use the executables, please visit `WFP-VAM.github.io/modape <https://wfp-vam.github.io/modape/>`_.


CHANGES
-----
- v0.1.2:
- fix issues with pytest and dates in HDF5 for PYTHON 2.7
- v0.1.1:
- minor changes to MANIFEST
- v0.1.0:
- initial release

-----

References:

P. H. C. Eilers, V. Pesendorfer and R. Bonifacio, "Automatic smoothing of remote sensing data," 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Brugge, 2017, pp. 1-3.
doi: 10.1109/Multi-Temp.2017.8076705
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8076705&isnumber=8035194

Core Whittaker function adapted from ``whit2`` function from `R` package `ptw <https://cran.r-project.org/package=ptw>`_:

Bloemberg, T. G. et al. (2010) "Improved Parametric Time Warping for Proteomics", Chemometrics and Intelligent Laboratory Systems, 104 (1), 65-74

Wehrens, R. et al. (2015) "Fast parametric warping of peak lists", Bioinformatics, in press.

-----

Author & maintainer:

Valentin Pesendorfer

valentin.pesendorfer@wfp.org

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

modape-0.1.2.tar.gz (9.3 MB view details)

Uploaded Source

Built Distributions

modape-0.1.2-cp36-cp36m-win_amd64.whl (9.3 MB view details)

Uploaded CPython 3.6mWindows x86-64

modape-0.1.2-cp36-cp36m-win32.whl (9.3 MB view details)

Uploaded CPython 3.6mWindows x86

modape-0.1.2-cp27-cp27m-win_amd64.whl (9.3 MB view details)

Uploaded CPython 2.7mWindows x86-64

modape-0.1.2-cp27-cp27m-win32.whl (9.3 MB view details)

Uploaded CPython 2.7mWindows x86

File details

Details for the file modape-0.1.2.tar.gz.

File metadata

  • Download URL: modape-0.1.2.tar.gz
  • Upload date:
  • Size: 9.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/36.6.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.4

File hashes

Hashes for modape-0.1.2.tar.gz
Algorithm Hash digest
SHA256 1e07b40b7712a83c4bb278b3a01469370d47b151e72f55de419b7efb466670d6
MD5 5594ada25be97768236e34f4841e32b4
BLAKE2b-256 7c1ada21b9797fa291deefae426dccc909393ed9a2f0a6f52cedb05b3f846256

See more details on using hashes here.

File details

Details for the file modape-0.1.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: modape-0.1.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 9.3 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8

File hashes

Hashes for modape-0.1.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e6edce62e7f470c35d6fcb516cd4e2b5659c4c8c338797ccc6ff8529b3b0e40b
MD5 6c61aee3932e7caaa1467b64b3e162c8
BLAKE2b-256 086654bafdd4d1b42dc305f091ef42689ab990b70fa62a2b142cb04c09eea0bf

See more details on using hashes here.

File details

Details for the file modape-0.1.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: modape-0.1.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 9.3 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8

File hashes

Hashes for modape-0.1.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 a380e6798deb873192ff9bf6a6dec4a8984301d50bdfa2c5d81e1c50d9692288
MD5 dccfc4a0df33cbf0469eb28a9d6a1107
BLAKE2b-256 af8ba2a975140aaef84e40d9e8a08f46c27d6ed8b1675c40d1a7e27ab880e5ba

See more details on using hashes here.

File details

Details for the file modape-0.1.2-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: modape-0.1.2-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 9.3 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8

File hashes

Hashes for modape-0.1.2-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 e9616ff53428621e0c550ae8d18e16ed7aac6ab035c02ff1581c574649000bc5
MD5 3fc496442bb8f8c8f5f9d49537941d0e
BLAKE2b-256 4e861b2e5c728e8189b5f68708c1e8a10b1fab4f0bc86e784e98ee5518f0110b

See more details on using hashes here.

File details

Details for the file modape-0.1.2-cp27-cp27m-win32.whl.

File metadata

  • Download URL: modape-0.1.2-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 9.3 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8

File hashes

Hashes for modape-0.1.2-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 4ee0127ee4f238fb68d93cb9147cf71790a6ace69c3a967fb89de37820225a49
MD5 2519a4c76540bed1aca5ce8238f7920a
BLAKE2b-256 0a0d521e90db840e03f0ad8e9ea2b93238d960d0e59c77717071334692738f07

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page