Skip to main content

This packages enables a quick creation of a report comparing quality of several ML models

Project description

Documentation Status

Model Quality Report

This packages enables a quick creation of a model quality report, which is returned as a dict.

Main ingredients are a data splitter creating test and training data according various rules and the quality report itself. The quality report takes care of the splitting, fitting, predicting and finally deriving quality metrics.

Documentation

The official documentation is hosted on ReadTheDocs: https://model-quality-report.readthedocs.io

Installing the package

Latest available code:

pip install model_quality_report

Specific version:

pip install model_quality_report==X.Y.Z

Quickstart

  • The RandomDataSplitter splits data randomly using sklearn.model_selection.train_test_split:
X = pd.DataFrame({'a': [1, 2, 3, 4, 5], 'b': ['a', 'b', 'c', 'd', 'e']})
y = pd.Series(data=range(5))

splitter = RandomDataSplitter(test_size=0.33, random_state=2)
X_train, X_test, y_train, y_test = splitter.split(X, y)
  • The TimeDeltaDataSplitter divides such that data from last period of length time_delta is used as test data. Here a pd.Timedelta and the date column name is provided:
splitter = TimeDeltaDataSplitter(date_column_name='shipping_date', time_delta=pd.Timedelta(3, unit='h')) 
X_train, X_test, y_train, y_test = splitter.split(X, y)
  • The SplitDateDataSplitter splits such that data after a provided date are used as test data. Additionally, the name of the date column has to be provided:
splitter = SplitDateDataSplitter(date_column_name='shipping_date', split_date=pd.Timstamp('2016-01-01'))
X_train, X_test, y_train, y_test = splitter.split(X, y)
  • The SortedDataSplitter requires a column with sortable values. Data are divided such that the test data set encompasses last fraction test_size. Sorting can be in ascending and descending order.
splitter = SortedDataSplitter(sortable_column_name='shipping_date', test_size=0.2, ascending=True)
X_train, X_test, y_train, y_test = splitter.split(X, y)
  • Using RegressionQualityReport class a quality report for a regression model can be created as following:
splitter = SplitDateDataSplitter(date_column_name='shipping_date', split_date=pd.Timstamp('2016-01-01'))
model = sklearn.linear_model.LinearRegression()
quality_reporter = RegressionQualityReport(model, splitter)
report = quality_reporter.create_reports()

An exemplary report looks as follows:

{'metrics': 
    {'explained_variance_score': -6.018595041322246, 
     'mape': 0.3863636363636345, 
     'mean_absolute_error': 4.242424242424224, 
     'mean_squared_error': 29.426997245178825, 
     'median_absolute_error': 2.272727272727268, 
     'r2_score': -10.03512396694206}, 
 'data': 
    {'true': {3: 10, 4: 12, 2: 8}, 
     'predicted': {3: 12.272727272727268, 4: 20.999999999999964, 2: 6.545454545454561}}}  

Note that the model must have a model.fit and a model.predict function.

Available Features

Data Splitter

RandomDataSplitter: splits randomly TimeDeltaDataSplitter: uses data in last period of length as test data SplitDateDataSplitter: uses data with timestamp newer than split date as test data SortedDataSplitter: sorts data along given column and takes last fraction of size x_test as test data ByHorizon: produces a list of splits of temporal data such that each consecutive train set has one more observation and test set one less ByFrequency: produces a list of splits of temporal data such that the data is split by a series of dates on a specified frequency FixedDates: produces a list of splits of temporal data given a list of fixed dates.

Quality Report

RegressionQualityReport: creates a quality report for a regression model CrossValidationTimeSeriesQualityReport: creates a quality report for a time series model

Report Aggregation

  • ModelComparisonReport aggregates reports using the list of derivatives of QualityReportBase, data, and experiment keys.
  • ReportAggregator is designed to aggregate model quality reports from different models that potentially use different input/output data and can not fit into the framework of ModelComparisonReport. ReportAggregator operates with the list of classes that derive from ExperimentBase.

Developers should know

Create a virtual environment and activate it

python -m venv venv
source venv/bin/activate

Install the development packages

pip install -e .[dev]

and use pre-commit to make sure that your code is blackified automatically (used the black package):

pre-commit install

Run tests:

pip install -e .[test]
coverage run -m unittest discover tests
coverage report

Build documentation (see more details here):

pip install -e .[doc]
mkdocs build

or use

mkdocs serve

if you prefer a live, self-refreshing, documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

model_quality_report-1.3.0.tar.gz (33.9 kB view hashes)

Uploaded source

Built Distribution

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page