Monitaur Client Library
Project description
Monitaur Client Library
Tested with:
- Python 3.7.6
- Python 3.6.10
Install
$ pip install monitaur
Example
from monitaur import Monitaur
from monitaur.utils import hash_file
# create monitaur instance
monitaur = Monitaur(
auth_key="changme",
base_url="http://localhost:8008",
)
# train model
dataset = loadtxt("./_example/data.csv", delimiter=",")
seed = 7
test_size = 0.1
model_data = train_model(dataset, seed, test_size)
trained_model = model_data["trained_model"]
training_data = model_data["training_data"]
dump(trained_model, open(f"./_example/data.joblib", "wb"))
# add model to api
model_data = {
"name": "Diabetes Classifier",
"type": "Gradient Boosting",
"model_type": "tabular",
"library": "xgboost",
"trained_model_hash": hash_file("./_example/data.joblib"), # trained model
"production_file_hash": hash_file("./_example/prediction.py"), # production file used for running inputs through the trained model
"feature_number": 8,
"owner": "Anthony Habayeb",
"developer": "Andrew Clark",
}
model_id = monitaur.add_model(**model_data)
# get aws credentials
credentials = monitaur.get_credentials(model_id)
# record training
record_training_data = {
"credentials": credentials,
"model_id": model_id,
"trained_model": trained_model,
"training_data": training_data,
"feature_names": [
"Pregnancies",
"Glucose",
"BloodPressure",
"SkinThickness",
"Insulin",
"BMI",
"DiabetesPedigreeF",
"Age",
],
# "re_train": True
}
monitaur.record_training(**record_training_data)
# record transaction
prediction = get_prediction([2, 84, 68, 27, 0, 26.7, 0.341, 32])
transaction_data = {
"credentials": credentials,
"model_id": model_id,
"trained_model_hash": hash_file("./_example/data.joblib"),
"production_file_hash": hash_file("./_example/prediction.py"),
"prediction": prediction,
"features": {
"Pregnancies": 2,
"Glucose": 84,
"BloodPressure": 68,
"SkinThickness": 27,
"Insulin": 0,
"BMI": 26.7,
"DiabetesPedigreeF": 0.341,
"Age": 32,
},
}
response = monitaur.record_transaction(**transaction_data)
print(response)
History
0.1.8 (2020-01-30)
- Rename model_type to model_class.
- Add AnchorTabular class from alibi.
0.1.7 (2020-01-27)
- Constrain model and library type.
0.1.6 (2020-01-22)
- First release on PyPI.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
monitaur-0.1.8.tar.gz
(20.0 kB
view details)
Built Distribution
monitaur-0.1.8-py3-none-any.whl
(19.7 kB
view details)
File details
Details for the file monitaur-0.1.8.tar.gz
.
File metadata
- Download URL: monitaur-0.1.8.tar.gz
- Upload date:
- Size: 20.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
7a1150c35d5b75637a7b72916e5d83e01d0eaf3186a657fe378af7870c6eedb0
|
|
MD5 |
700e8f9f98565dc50012948a9e7e2229
|
|
BLAKE2b-256 |
29b5797894fb8eed718395eb4531af73627b3c3221ff373ba0f09d3787870763
|
File details
Details for the file monitaur-0.1.8-py3-none-any.whl
.
File metadata
- Download URL: monitaur-0.1.8-py3-none-any.whl
- Upload date:
- Size: 19.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
46033b2e272b8db8a6f67541c39beb7e5fb5ec5c46d26455e262ce6ed332d6ae
|
|
MD5 |
db5f221752007a90f027030310e58d41
|
|
BLAKE2b-256 |
190904f12fb0cbf9298b9445d7b6a687666fbc0bad1737661f874753d40aa073
|