Skip to main content

Multi-threaded Optimization Toolbox

Project description

The Multi-threaded Optimization Toolbox (MOT) is a library for parallel optimization and sampling using the OpenCL compute platform. Using OpenCL allows parallel processing using all CPU cores or using the GPU (Graphics card). MOT implements OpenCL parallelized versions of the Powell, Nelder-Mead Simplex and Levenberg-Marquardt non-linear optimization algorithms alongside various flavors of Markov Chain Monte Carlo (MCMC) sampling.

For the full documentation see: https://mot.readthedocs.org

Can MOT help me?

MOT can help you if you have multiple small independent optimization problems. For example, if you have a lot of (>10.000) small optimization problems, with ~30 parameters or less each, MOT may be of help. If, on the other hand, you have one big optimization problem with 10.000 variables, MOT unfortunately can not help you.

Example use case

MOT was originally written as a computation package for the Microstructure Diffusion Toolbox, used in dMRI brain research. In diffusion Magnetic Resonance Imaging (dMRI) the brain is scanned in a 3D grid where each grid element, a voxel, represents its own optimization problem. The number of data points per voxel is generally small, ranging from 30 to 500 datapoints, and the models fitted to that data have generally somewhere between 6 and 20 parameters. Since each of these voxels can be analyzed independently of the others, the computations can be massively parallelized and hence programming in OpenCL potentially allows large speed gains. This software toolbox was originally built for exactly this use case, yet the algorithms and data structures are generalized such that any scientific field may take advantage of this toolbox.

For the diffusion MRI package MDT to which is referred in this example, please see https://github.com/cbclab/MDT.

Summary

  • Free software: LGPL v3 license
  • Interface in Python, computations in OpenCL
  • Implements Powell, Nelder-Mead Simplex and Levenberg-Marquardt non-linear optimization algorithms
  • Implements various Markov Chain Monte Carlo (MCMC) sampling routines
  • Tags: optimization, sampling, parallel, opencl, python

Quick installation guide

The basic requirements for MOT are:

  • Python 3.x
  • OpenCL 1.2 (or higher) support in GPU driver or CPU runtime

Linux

For Ubuntu >= 16 you can use:

  • sudo add-apt-repository ppa:robbert-harms/cbclab
  • sudo apt update
  • sudo apt install python3-pip python3-mot
  • sudo pip3 install tatsu

For Debian users and Ubuntu < 16 users, install MOT with:

  • sudo apt install python3 python3-pip python3-pyopencl python3-devel
  • sudo pip3 install mot

Mac

Windows For Windows the short guide is:

For more information and for more elaborate installation instructions, please see: https://mot.readthedocs.org

Caveats

There are a few caveats and known issues, primarily related to OpenCL:

  • Windows support is experimental due to the difficulty of installing PyOpenCL, hopefully installing PyOpenCL will get easier on Windows soon.
  • GPU acceleration is not possible in most virtual machines due to lack of GPU or PCI-E pass-through, this will change whenever virtual machines vendors program this feature. Our recommendation is to install Linux on your machine directly.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
mot-0.6.10-py2.py3-none-any.whl (165.3 kB) Copy SHA256 hash SHA256 Wheel py2.py3 Sep 18, 2018
mot-0.6.10.tar.gz (159.9 kB) Copy SHA256 hash SHA256 Source None Sep 18, 2018

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page