Data science tools from Moz
Project description
A grab bag of assorted Data science tools from Moz.
Currently includes:
Utilities for training/evaluating machine learning models:
Cross validation
Evaluation metrics (AUC, F1, etc)
Training models in parallel
Ensemble model selection
PCA
A generic way to specify model inputs
Some linear models:
Linear Regression
Logistic Regression
GLM
Installing
pip install mozsci
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mozsci-0.9.2.tar.gz
(34.6 kB
view details)
Built Distribution
File details
Details for the file mozsci-0.9.2.tar.gz
.
File metadata
- Download URL: mozsci-0.9.2.tar.gz
- Upload date:
- Size: 34.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | eb7fda57c357e503e82f7ed9634b1c406fef660c3dac07c31dadfd64234a66c2 |
|
MD5 | f6446d9784db9c2cbb3d848d59e202b0 |
|
BLAKE2b-256 | 70093d2ddb739aadeb93a04957f7e26c0405ff040020517e18181893e3c87628 |
Provenance
File details
Details for the file mozsci-0.9.2-cp27-none-macosx_10_10_intel.whl
.
File metadata
- Download URL: mozsci-0.9.2-cp27-none-macosx_10_10_intel.whl
- Upload date:
- Size: 80.2 kB
- Tags: CPython 2.7, macOS 10.10+ intel
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2ee766a47ee300cee198a0e625890db30bd8d831519df74ec4613dd8b0bd9a4f |
|
MD5 | e9cf0d4025c3d609494c06750810df50 |
|
BLAKE2b-256 | 9a865f29a929cb5acb95a5d74ad0d089100effa5c9d40c5287ea85c0418239d2 |