Skip to main content

MPI volume decomposition and particle distribution tools

Project description

https://img.shields.io/pypi/v/mpipartition.svg https://github.com/ArgonneCPAC/MPIPartition/actions/workflows/pypi.yml/badge.svg https://github.com/ArgonneCPAC/MPIPartition/actions/workflows/sphinx.yml/badge.svg

A python module for MPI volume decomposition and particle distribution

Features

  • Cartesian partitioning of a cubic volume (arbitrary dimensions) among MPI ranks

  • Equal area decomposition of the spherical shell (S2) among MPI ranks

  • distributing particle-data among ranks to the corresponding subvolume / surface segment

  • overloading particle-data at rank boundaries (“ghost particles”)

Installation

Installing from the PyPI repository:

pip install mpipartition

Installing the development version from the GIT repository

git clone https://github.com/ArgonneCPAC/mpipartition.git
cd mpipartition
python setup.py develop

Requirements

These packages will be automatically installed if they are not already present:

  • Python >= 3.8

  • mpi4py: MPI for Python

  • numpy: Python array library

  • numba: Python JIT compiler

Basic Usage

Check the documentation for an in-depth explanation / documentation.

# this code goes into mpipartition_example.py

from mpipartition import Partition, distribute, overload
import numpy as np

# create a partition of the unit cube with available MPI ranks
box_size = 1.
partition = Partition()

if partition.rank == 0:
    print(f"Number of ranks: {partition.nranks}")
    print(f"Volume decomposition: {partition.decomposition}")

# create random data
nparticles_local = 1000
data = {
    "x": np.random.uniform(0, 1, nparticles_local),
    "y": np.random.uniform(0, 1, nparticles_local),
    "z": np.random.uniform(0, 1, nparticles_local)
}

# distribute data to ranks assigned to corresponding subvolume
data = distribute(partition, box_size, data, ('x', 'y', 'z'))

# overload "edge" of each subvolume by 0.05
data = overload(partition, box_size, data, 0.05, ('x', 'y', 'z'))

This code can then be executed with mpi:

mpirun -n 10 python mpipartition_example.py

A more applied example, using halo catalogs from a HACC cosmological simulation (in the GenericIO data format):

from mpipartition import Partition, distribute, overload
import numpy as np
import pygio

# create a partition with available MPI ranks
box_size = 64.  # box size in Mpc/h
partition = Partition(3)  # by default, the dimension is 3

# read GenericIO data in parallel
data = pygio.read_genericio("m000p-499.haloproperties")

# distribute
data = distribute(partition, box_size, data, [f"fof_halo_center_{x}" for x in "xyz"])

# mark "owned" data with rank (allows differentiating owned and overloaded data)
data["status"] = partition.rank * np.ones(len(data["fof_halo_center_x"]), dtype=np.uint16)

# overload by 4Mpc/h
data = overload(partition, box_size, data, 4., [f"fof_halo_center_{x}" for x in "xyz"])

# now we can do analysis such as 2pt correlation functions (up to 4Mpc/h)
# or neighbor finding, etc.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mpipartition-1.5.0.tar.gz (18.3 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

mpipartition-1.5.0-py3-none-any.whl (23.9 kB view details)

Uploaded Python 3

File details

Details for the file mpipartition-1.5.0.tar.gz.

File metadata

  • Download URL: mpipartition-1.5.0.tar.gz
  • Upload date:
  • Size: 18.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.1.3 CPython/3.11.12 Linux/6.11.0-1012-azure

File hashes

Hashes for mpipartition-1.5.0.tar.gz
Algorithm Hash digest
SHA256 b5d8e1cfce04dc54e986dc04a8bed5319a69d2eeb26fabe1440089eabf29b0f8
MD5 2f472de6db24ecf44e3621f3301b7990
BLAKE2b-256 e4b06ce9dc49717defa946d04bb15e4f078fead98dcfaa00140701d9abb72b54

See more details on using hashes here.

File details

Details for the file mpipartition-1.5.0-py3-none-any.whl.

File metadata

  • Download URL: mpipartition-1.5.0-py3-none-any.whl
  • Upload date:
  • Size: 23.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.1.3 CPython/3.11.12 Linux/6.11.0-1012-azure

File hashes

Hashes for mpipartition-1.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b50d834a19da7cdf8221e9aa1bb1f351fd54dba75998276864a6a133cf4510f0
MD5 ef95a1d1b39a28eb9e02659530010ea0
BLAKE2b-256 f5799cfafc8eb58272df88586fc465d462ab975cfabbcb0b12ffba6563143be1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page