Skip to main content

Access, Deisotope, and Charge Deconvolute Mass Spectra

Project description

https://raw.githubusercontent.com/mobiusklein/ms_deisotope/master/docs/_static/logo.png

Documentation | PYPIBADGE | GHAB

A Library for Deisotoping and Charge State Deconvolution For Mass Spectrometry

This library combines brainpy and ms_peak_picker to build a toolkit for MS and MS/MS data. The goal of these libraries is to provide pieces of the puzzle for evaluating MS data modularly. The goal of this library is to combine the modules to streamline processing raw data.

Deconvolution

The general-purpose averagine-based deconvolution procedure can be called by using the high level API function deconvolute_peaks, which takes a sequence of peaks, an averagine model, and a isotopic goodness-of-fit scorer:

import ms_deisotope

deconvoluted_peaks, _ = ms_deisotope.deconvolute_peaks(peaks, averagine=ms_deisotope.peptide,
                                                       scorer=ms_deisotope.MSDeconVFitter(10.))

The result is a deisotoped and charge state deconvoluted peak list where each peak’s neutral mass is known and the fitted charge state is recorded along with the isotopic peaks that gave rise to the fit.

Refer to the Documentation for a deeper description of isotopic pattern fitting.

Averagine

An “Averagine” model is used to describe the composition of an “average amino acid”, which can then be used to approximate the composition and isotopic abundance of a combination of specific amino acids. Given that often the only solution available is to guess at the composition of a particular m/z because there are too many possible elemental compositions, this is the only tractable solution.

This library supports arbitrary Averagine formulae, but the Senko Averagine is provided by default: {“C”: 4.9384, “H”: 7.7583, “N”: 1.3577, “O”: 1.4773, “S”: 0.0417}

from ms_deisotope import Averagine
from ms_deisotope import plot

peptide_averagine = Averagine({"C": 4.9384, "H": 7.7583, "N": 1.3577, "O": 1.4773, "S": 0.0417})

plot.draw_peaklist(peptide_averagine.isotopic_cluster(1266.321, charge=1))
ms_deisotope includes several pre-defined averagines (or “averagoses” as may be more appropriate):
  1. Senko’s peptide - ms_deisotope.peptide

  2. Native N- and O-glycan - ms_deisotope.glycan

  3. Permethylated glycan - ms_deisotope.permethylated_glycan

  4. Glycopeptide - ms_deisotope.glycopeptide

  5. Sulfated Glycosaminoglycan - ms_deisotope.heparan_sulfate

  6. Unsulfated Glycosaminoglycan - ms_deisotope.heparin

Please see the Documentation for more information on mass spectrum data file reading/writing, peak sets, and lower-level signal processing tools.

Installing

ms_deisotope uses PEP 517 and 518 build system definition and isolation to ensure all of its compile-time dependencies are installed prior to building. Normal installation should work with pip, and pre-built wheels are available for Windows.

$ pip install ms_deisotope

C Extensions

ms_deisotope and several of its dependencies use C extensions to make iterative operations much faster. If you plan to use this library on a large amount of data, I highly recommend you ensure they are installed:

>>> import ms_deisotope
>>> ms_deisotope.DeconvolutedPeak
<type 'ms_deisotope._c.peak_set.DeconvolutedPeak'>

Building C extensions from source requires a version of Cython >= 3.0.3

Compiling C extensions requires that numpy, brain-isotopic-distribution, and ms_peak_picker be compiled and installed prior to building ms_deisotope:

pip install numpy
pip install -v brain-isotopic-distribution ms_peak_picker
pip install -v ms_deisotope

If these libraries are not installed, ms_deisotope will fall back to using pure Python implementations, which are much slower.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ms_deisotope-0.0.59.tar.gz (5.7 MB view details)

Uploaded Source

Built Distributions

ms_deisotope-0.0.59-cp312-cp312-win_amd64.whl (7.8 MB view details)

Uploaded CPython 3.12Windows x86-64

ms_deisotope-0.0.59-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.8 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

ms_deisotope-0.0.59-cp312-cp312-macosx_11_0_arm64.whl (7.9 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

ms_deisotope-0.0.59-cp311-cp311-win_amd64.whl (7.8 MB view details)

Uploaded CPython 3.11Windows x86-64

ms_deisotope-0.0.59-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

ms_deisotope-0.0.59-cp311-cp311-macosx_11_0_arm64.whl (7.9 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

ms_deisotope-0.0.59-cp310-cp310-win_amd64.whl (7.8 MB view details)

Uploaded CPython 3.10Windows x86-64

ms_deisotope-0.0.59-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

ms_deisotope-0.0.59-cp310-cp310-macosx_11_0_arm64.whl (7.9 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

ms_deisotope-0.0.59-cp39-cp39-win_amd64.whl (7.8 MB view details)

Uploaded CPython 3.9Windows x86-64

ms_deisotope-0.0.59-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

ms_deisotope-0.0.59-cp39-cp39-macosx_11_0_arm64.whl (7.9 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

ms_deisotope-0.0.59-cp38-cp38-win_amd64.whl (7.8 MB view details)

Uploaded CPython 3.8Windows x86-64

ms_deisotope-0.0.59-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

ms_deisotope-0.0.59-cp38-cp38-macosx_11_0_arm64.whl (7.9 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

File details

Details for the file ms_deisotope-0.0.59.tar.gz.

File metadata

  • Download URL: ms_deisotope-0.0.59.tar.gz
  • Upload date:
  • Size: 5.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.12

File hashes

Hashes for ms_deisotope-0.0.59.tar.gz
Algorithm Hash digest
SHA256 b3d738a8dd0b7cf272eb7eb7575db0843e4372754fab7e807f02a198619d8513
MD5 569f066c587a9892d5978d6c745b2f9b
BLAKE2b-256 e940388ed71c4b5fc825d97c986c0c67379f4e80ebcb0020e9e617c534b9e665

See more details on using hashes here.

File details

Details for the file ms_deisotope-0.0.59-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for ms_deisotope-0.0.59-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1b4151ed0a3e44ee6f7331d63b1ae84f41a6139c30cbcbe418d43731cb9f966b
MD5 02531fc0c17eab4981ca4ae58ffbdd54
BLAKE2b-256 17101c12ccc7dd14b70bf1726d104eca0393b60ae8f99da3a82b5d21f784a189

See more details on using hashes here.

File details

Details for the file ms_deisotope-0.0.59-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms_deisotope-0.0.59-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 57d065985adb4b5c76363262a8f0d6e35a9611fa026c5c417d71d5b424ab0265
MD5 06f52136c6502112efc231f968562f7b
BLAKE2b-256 2c64b240b092aeb3b5e58cbde714545eba833a497c4c5f63575ba91533a6fc6d

See more details on using hashes here.

File details

Details for the file ms_deisotope-0.0.59-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ms_deisotope-0.0.59-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2431ea31289efe30d045ab3a4c16f900c7dae5be47d560dbc807b86980bbc1db
MD5 655d84bac7b80c5012f7db4f31c27e70
BLAKE2b-256 722c311f87403e4b316f1c67b44b1ee54afc6a3b55e7b1031ae6568a32b3e14e

See more details on using hashes here.

File details

Details for the file ms_deisotope-0.0.59-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ms_deisotope-0.0.59-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 06efb99d20a18b2a7a0ac4bdb63283590d43698407dc4905290653fa0ae01f5f
MD5 4e94f80fc708453484329e39eb9ac642
BLAKE2b-256 9503cbb31518d81ae58c5b257097ca3ac1e7af09e9c3c0bc8ae5f3ccc1cefc6a

See more details on using hashes here.

File details

Details for the file ms_deisotope-0.0.59-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms_deisotope-0.0.59-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0d0b55fcb93c52677e2b0d1abc259cbe65efb23376836405dfb842d00e6aba7d
MD5 80077f4c4eb4db933c9b78c73d7139c0
BLAKE2b-256 bdad9f2a69c0f28bc3cd6815f152772c91bf08ae9855fe83a5c93dd0c5d7cd94

See more details on using hashes here.

File details

Details for the file ms_deisotope-0.0.59-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ms_deisotope-0.0.59-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9ca59d3dcefb53f6fb70fc92f8493cfd3f6fbeb480a9b3b76e38de9330d36a81
MD5 ee4358bae6337f45b7042ea9ea6ea564
BLAKE2b-256 4a24e69173c30f0f5932cee54847719ad21ce228bb96493e3bd4b82ce29e9e92

See more details on using hashes here.

File details

Details for the file ms_deisotope-0.0.59-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ms_deisotope-0.0.59-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3149348643a1942d1ed9d3746143e6dea62b2e29487bff1e826e0db7ce06b2fa
MD5 5f6f3c224f8f5b1859a3e2ff488368d3
BLAKE2b-256 f4e424b86da5f62c30e783ea17a5ecb9c07e7a5125acee70340b4df5133557d9

See more details on using hashes here.

File details

Details for the file ms_deisotope-0.0.59-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms_deisotope-0.0.59-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ac5eae796a146aa7080c7c0721d290dc843a374700d680315e4481c33737696
MD5 28737fcbd9d8993d4c1b69b8e7abeb06
BLAKE2b-256 f5f1ab9742aa66a2f5540ae9f2f9b10fafe2ea70fc3d386b1331a1447734b3c1

See more details on using hashes here.

File details

Details for the file ms_deisotope-0.0.59-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ms_deisotope-0.0.59-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3e8315db9695f3bfcb148007e8e8d62c7bc49a9b30831318234857ede4b1210c
MD5 0fe24cfaad3b20f0cd6d56e929318f9b
BLAKE2b-256 79b38c6e078ea76230640f690244b81643aad7e2be45a8abc8d680147890fa69

See more details on using hashes here.

File details

Details for the file ms_deisotope-0.0.59-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for ms_deisotope-0.0.59-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 06a63ebbd4d6f1d3b8fd0f272e9cecfce90eb526c60e2e7ecc783babb9c6ba09
MD5 cfb4fc40760dc2a92ae583b2777df802
BLAKE2b-256 cf7e40c3cd8e2e6b40d09c7e25df028f18f9f0dba7a9d6c7e312576946f38ca4

See more details on using hashes here.

File details

Details for the file ms_deisotope-0.0.59-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms_deisotope-0.0.59-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 63b36b1164a44dec57967fecd62b03754b076472226a508799efb0feea689206
MD5 03c8973271cf9ebbc08fe77cfe0f5d80
BLAKE2b-256 4445a19e47c9cea8fb087212be42aeb243e90c69edd89bedd98f74a94ff345d4

See more details on using hashes here.

File details

Details for the file ms_deisotope-0.0.59-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ms_deisotope-0.0.59-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 90fdff054ab334035f172621d6f3c65f2839084077586bd8a5fd4679dcdd046e
MD5 14bf87ffff809a46ddf8cb775befcaa9
BLAKE2b-256 6e1b3d792f6f4ba9bd60d1d6a0d62b0bc91eb52b44f6bd615450daf79a6ab3aa

See more details on using hashes here.

File details

Details for the file ms_deisotope-0.0.59-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for ms_deisotope-0.0.59-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 37be5a53882863c9ec757c1d53db0c63ec91e09238ba5d0aa1df315fdd84d20f
MD5 72e3b6cf1f421fa5a0dd581a1f1e872f
BLAKE2b-256 b1c0c15a70fbda624881b978fd3b8ba1ee1acc03ec174b13992cba51657aab44

See more details on using hashes here.

File details

Details for the file ms_deisotope-0.0.59-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms_deisotope-0.0.59-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 33a2049dfd81e1ca372cf91d9d504ba34a7985610bf703ad9e7ebe49e89a3e98
MD5 8c4114ff0406adacdd9d80f4f2475ebf
BLAKE2b-256 e192a94a9ee064cb6baaea2cd00a384c14bcd43348090b76174d120d8ee3a98a

See more details on using hashes here.

File details

Details for the file ms_deisotope-0.0.59-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ms_deisotope-0.0.59-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d437b25c464bf7c38c2aab7cdd323cfc9cb419a6bca2346e073dbaa9cb670e54
MD5 79ba524598a212986ea4a93449267339
BLAKE2b-256 3ca57df27e350e0a41ac44e1cc962b8a4cbd789228f5def4e181dc89af4edc52

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page