Skip to main content

Stransverse mass computation as a numpy ufunc.

Project description

https://img.shields.io/pypi/v/mt2.svg https://img.shields.io/pypi/pyversions/mt2.svg https://github.com/tpgillam/mt2/workflows/Build/badge.svg?branch=master

This package may be used to evaluate MT2 in all its variants. This includes both symmetric and asymmetric MT2. MT2 is also known as the “stransverse mass”.

This package provides an interface to the bisection algorithm of http://arxiv.org/abs/1411.4312, via an implementation detailed below. The variable MT2 itself is described here. Related information may be found in papers relating to MT2 linked from here.

Getting started

Install from PyPI with e.g. pip:

pip install mt2

One can then compute MT2 as follows; here for the “symmetric” case, where both invisible particles have the same mass:

from mt2 import mt2

# The units of all quantities are the same, e.g. GeV
val = mt2(
    100, 410, 20,  # Visible 1: mass, px, py
    150, -210, -300,  # Visible 2: mass, px, py
    -200, 280,  # Missing transverse momentum: x, y
    100, 100)  # Invisible 1 mass, invisible 2 mass
print("Expected mT2 = 412.628.  Computed mT2 = ", val)

mt2 is also available on conda-forge.

Examples

Vectorisation

The mt2 function supports broadcasting over its arguments if they are array-like. For example, one could scan over a grid of invisible particle masses like so:

n1 = 20
n2 = 20
mass_1 = numpy.linspace(10, 200, n1).reshape((-1, 1))
mass_2 = numpy.linspace(10, 200, n2).reshape((1, -1))

# `val` has shape (n1, n2)
val = mt2(
    100, 410, 20,  # Visible 1: mass, px, py
    150, -210, -300,  # Visible 2: mass, px, py
    -200, 280,  # Missing transverse momentum: x, y
    mass_1, mass_2)  # Invisible 1 mass, invisible 2 mass

Note on performance

With full precision, the main reason to use vectorisation as above is convenience. The time spent in the C++ MT2 calculation is somewhat larger than the overhead introduced by a Python for loop. Vectorising can give a runtime reduction of ⪅30% in this case.

However, the benefit can be more significant when using a lower precision. This corresponds to a larger value for the desired_precision_on_mt2 argument. This is because less time is spent in C++, so proportionally the Python overhead of a for loop is more significant.

Toy MC

A fun example using a toy Monte-Carlo simulation can be viewed in this notebook

Other notes

For further information, see the documentation:

help(mt2)

Also exported is mt2_ufunc. This is the raw implementation as a numpy ufunc. Usage is the same as for mt2, but it supports some additional arguments, like where. The reader should refer to the numpy documentation for a description of these.

Implementation

The underlying implementation of the Lester-Nachman algorithm used in this package is by Rupert Tombs, found in src/mt2_bisect.h. It provides results consistent with the implementation provided with http://arxiv.org/abs/1411.4312, but is 3x to 4x faster. Note that this does not implement the “deci-sectioning” described in the paper, since it is found to provide a more significant performance penalty in the majority of cases. Our version is also scale invariant, and is suitable for large ranges of input magnitude.

The legacy implementation, as it appears on arXiv, is also wrapped and exposed as mt2_arxiv for those that wish to independently cross-check the re-implementation. If you find any discrepancies, please file a bug report! We strongly encourage all users to use the primary mt2 method, due to the higher performance and scale invariance.

Performance

The default installation method via pip uses a precompiled wheel for your platform. If you wish to compile from source for your platform, you could instead install like so:

pip install mt2 --no-binary :all:

Since this can allow use of newer compilers, and code more optimised for your architecture, this can give a small speedup. On the author’s computer, there was 1% runtime reduction as measured with examples/benchmark.py.

License

Please cite:

All files in this repository are released under the MIT license.

Other implementations

A list of alternative implementations of the MT2 calculation can be found here:

https://www.hep.phy.cam.ac.uk/~lester/mt2/#Alternatives

In Python, the other wrapper of the same algorithm known to the authors is by Nikolai Hartmann, here: https://gitlab.cern.ch/nihartma/pymt2

Authors

  • @kesterlester: Original C++ implementation of mT2.

  • @rupt: Current C++ implementation used in this package.

  • @tpgillam: Python packaging

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mt2-1.3.1.tar.gz (36.9 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

mt2-1.3.1-cp314-cp314t-win_arm64.whl (52.0 kB view details)

Uploaded CPython 3.14tWindows ARM64

mt2-1.3.1-cp314-cp314t-win_amd64.whl (55.4 kB view details)

Uploaded CPython 3.14tWindows x86-64

mt2-1.3.1-cp314-cp314t-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ x86-64

mt2-1.3.1-cp314-cp314t-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl (122.0 kB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.12+ x86-64manylinux: glibc 2.28+ x86-64

mt2-1.3.1-cp314-cp314t-macosx_11_0_arm64.whl (51.7 kB view details)

Uploaded CPython 3.14tmacOS 11.0+ ARM64

mt2-1.3.1-cp314-cp314t-macosx_10_13_universal2.whl (73.6 kB view details)

Uploaded CPython 3.14tmacOS 10.13+ universal2 (ARM64, x86-64)

mt2-1.3.1-cp314-cp314-win_arm64.whl (51.8 kB view details)

Uploaded CPython 3.14Windows ARM64

mt2-1.3.1-cp314-cp314-win_amd64.whl (55.1 kB view details)

Uploaded CPython 3.14Windows x86-64

mt2-1.3.1-cp314-cp314-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ x86-64

mt2-1.3.1-cp314-cp314-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl (120.1 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.12+ x86-64manylinux: glibc 2.28+ x86-64

mt2-1.3.1-cp314-cp314-macosx_11_0_arm64.whl (51.5 kB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

mt2-1.3.1-cp314-cp314-macosx_10_13_universal2.whl (73.3 kB view details)

Uploaded CPython 3.14macOS 10.13+ universal2 (ARM64, x86-64)

mt2-1.3.1-cp313-cp313t-win_arm64.whl (51.0 kB view details)

Uploaded CPython 3.13tWindows ARM64

mt2-1.3.1-cp313-cp313t-win_amd64.whl (54.5 kB view details)

Uploaded CPython 3.13tWindows x86-64

mt2-1.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ x86-64

mt2-1.3.1-cp313-cp313t-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl (122.1 kB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.12+ x86-64manylinux: glibc 2.28+ x86-64

mt2-1.3.1-cp313-cp313t-macosx_11_0_arm64.whl (51.8 kB view details)

Uploaded CPython 3.13tmacOS 11.0+ ARM64

mt2-1.3.1-cp313-cp313t-macosx_10_13_universal2.whl (73.7 kB view details)

Uploaded CPython 3.13tmacOS 10.13+ universal2 (ARM64, x86-64)

mt2-1.3.1-cp313-cp313-win_arm64.whl (50.9 kB view details)

Uploaded CPython 3.13Windows ARM64

mt2-1.3.1-cp313-cp313-win_amd64.whl (54.2 kB view details)

Uploaded CPython 3.13Windows x86-64

mt2-1.3.1-cp313-cp313-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

mt2-1.3.1-cp313-cp313-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl (120.1 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.12+ x86-64manylinux: glibc 2.28+ x86-64

mt2-1.3.1-cp313-cp313-macosx_11_0_arm64.whl (51.6 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

mt2-1.3.1-cp313-cp313-macosx_10_13_universal2.whl (73.3 kB view details)

Uploaded CPython 3.13macOS 10.13+ universal2 (ARM64, x86-64)

mt2-1.3.1-cp312-cp312-win_arm64.whl (50.9 kB view details)

Uploaded CPython 3.12Windows ARM64

mt2-1.3.1-cp312-cp312-win_amd64.whl (54.2 kB view details)

Uploaded CPython 3.12Windows x86-64

mt2-1.3.1-cp312-cp312-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

mt2-1.3.1-cp312-cp312-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl (120.2 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.12+ x86-64manylinux: glibc 2.28+ x86-64

mt2-1.3.1-cp312-cp312-macosx_11_0_arm64.whl (51.6 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

mt2-1.3.1-cp312-cp312-macosx_10_13_universal2.whl (73.3 kB view details)

Uploaded CPython 3.12macOS 10.13+ universal2 (ARM64, x86-64)

mt2-1.3.1-cp311-cp311-win_arm64.whl (50.8 kB view details)

Uploaded CPython 3.11Windows ARM64

mt2-1.3.1-cp311-cp311-win_amd64.whl (54.2 kB view details)

Uploaded CPython 3.11Windows x86-64

mt2-1.3.1-cp311-cp311-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

mt2-1.3.1-cp311-cp311-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl (119.7 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.12+ x86-64manylinux: glibc 2.28+ x86-64

mt2-1.3.1-cp311-cp311-macosx_11_0_arm64.whl (51.6 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

mt2-1.3.1-cp311-cp311-macosx_10_9_universal2.whl (73.2 kB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

mt2-1.3.1-cp310-cp310-win_amd64.whl (54.2 kB view details)

Uploaded CPython 3.10Windows x86-64

mt2-1.3.1-cp310-cp310-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

mt2-1.3.1-cp310-cp310-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl (119.6 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.12+ x86-64manylinux: glibc 2.28+ x86-64

mt2-1.3.1-cp310-cp310-macosx_11_0_arm64.whl (51.6 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

mt2-1.3.1-cp310-cp310-macosx_10_9_universal2.whl (73.2 kB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

mt2-1.3.1-cp39-cp39-win_amd64.whl (54.2 kB view details)

Uploaded CPython 3.9Windows x86-64

mt2-1.3.1-cp39-cp39-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

mt2-1.3.1-cp39-cp39-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl (119.5 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.12+ x86-64manylinux: glibc 2.28+ x86-64

mt2-1.3.1-cp39-cp39-macosx_11_0_arm64.whl (51.5 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

mt2-1.3.1-cp39-cp39-macosx_10_9_universal2.whl (73.2 kB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file mt2-1.3.1.tar.gz.

File metadata

  • Download URL: mt2-1.3.1.tar.gz
  • Upload date:
  • Size: 36.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.9.0

File hashes

Hashes for mt2-1.3.1.tar.gz
Algorithm Hash digest
SHA256 5f9933f6ab2afa60bd24122622df5226dbf479bdde1ac1c57da6ba5e3937d204
MD5 da389f88271fc2e92e4dfdae851bc621
BLAKE2b-256 f3fb46fa6a53868958abf12e0b0d66db6ab411334986355ca79bc706dbff4b52

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp314-cp314t-win_arm64.whl.

File metadata

  • Download URL: mt2-1.3.1-cp314-cp314t-win_arm64.whl
  • Upload date:
  • Size: 52.0 kB
  • Tags: CPython 3.14t, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.9.0

File hashes

Hashes for mt2-1.3.1-cp314-cp314t-win_arm64.whl
Algorithm Hash digest
SHA256 0c151023de95f31f4bbd10e5649f81bf9c79229e8faf52ca0146db233d52b9d6
MD5 2ec7b8c39ee41f3e7a443d70a91ab054
BLAKE2b-256 69df9e45d6ef90865980d8011281e2f2aa68262d59b34b89ff0395c94aa01ede

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp314-cp314t-win_amd64.whl.

File metadata

  • Download URL: mt2-1.3.1-cp314-cp314t-win_amd64.whl
  • Upload date:
  • Size: 55.4 kB
  • Tags: CPython 3.14t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.9.0

File hashes

Hashes for mt2-1.3.1-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 c05a66c3267172b8288d401fc5d49894d8a5b1bdd296d43060cd0d3df9c8c8f3
MD5 f8eb25e558f9dbd2f62d94b789b397c3
BLAKE2b-256 9f32a2e1ddae03110c7e78e0d5558af0f4a66a4fe33adcac8bc25b6695d99917

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp314-cp314t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp314-cp314t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f4ea327d9387e4fe84626389e6bca01ecb28a95ba40cf4fc60c6659eab76815e
MD5 20071b941823aa636dc1f01c2b42d4f4
BLAKE2b-256 59b5b28869e0c0408b3fdd5c9cb8c321d1d303dd902c691a13b591b63c77f332

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp314-cp314t-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp314-cp314t-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7915524b6403a6469f30842059b92bbc4db4a2fa5f6378a34985ccb81925736f
MD5 10c804b12c5935e4383c855f107f298c
BLAKE2b-256 bb043810031cb8c464b56322b766bf1f7770bf8bd03b5fd6ec73e32523007c4f

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp314-cp314t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp314-cp314t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7d10da1b58a976e558e6f32ad418305061dce29ee295f5a67a31d7413b280ac3
MD5 5ab0ea32e06c309419d4d04075211318
BLAKE2b-256 186889178a11572cfdbac5f91acaaa3f79ac5ce931d7a7abdfac4e34ea1bbb69

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp314-cp314t-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp314-cp314t-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 b0c245deb53aed5694dcb61c2a3939c76dd840054c2832105d5ecb361aae57f6
MD5 6f43659a60fcdf461b43ba19324e9f09
BLAKE2b-256 11e15900e7ff043c3187b23baee3c86269373e6f6e6406f5038b27e8086ac144

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp314-cp314-win_arm64.whl.

File metadata

  • Download URL: mt2-1.3.1-cp314-cp314-win_arm64.whl
  • Upload date:
  • Size: 51.8 kB
  • Tags: CPython 3.14, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.9.0

File hashes

Hashes for mt2-1.3.1-cp314-cp314-win_arm64.whl
Algorithm Hash digest
SHA256 cecee8d79505f575cba8185dc7ec634f82c5a6cfa4ddeb20fddb96b802e0cc6d
MD5 5891b5993ff90d7bd09c8e82de49817e
BLAKE2b-256 b5e6cbc4b21c677c9e7da564684126411484d70b3b76a646bac284c6a1063848

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: mt2-1.3.1-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 55.1 kB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.9.0

File hashes

Hashes for mt2-1.3.1-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 49f32ffe65f1033798f27cfc037338f5ec1eda52cf9c6f103e61f2871b36e454
MD5 858005cdcd5980007eb0c80ca264457b
BLAKE2b-256 544b675d811e6ddf08b368c315eb4b0bbfb8425bd0624c72a3a5c86a4e166be5

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp314-cp314-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp314-cp314-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e511c82d35ad9e868c2a9e643cd9e95f1bc319c48878b577240cfb535ac69540
MD5 71f3b5136f80efdfdaabc575aa36a10d
BLAKE2b-256 6e81db955645087e77590a0f5b0ff8e86708b88da18236bbb3c6acf00be140b7

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp314-cp314-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp314-cp314-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ae28e5b8050dfc28d2bff56d48ac88d25dcfd38255d209f36a8238319b840222
MD5 764b3b1274b1e1adf6d9a7c9826359c0
BLAKE2b-256 f553f1d66314b2dc31bbeda714b3ec82730ae1304c6a802f456e72b3c3583f93

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5c3c2d59fc8d86b0dbd1e284079a9b0aac0663a5ff962878bac3845a0fd93d88
MD5 b3d9c6e595263434ec23efcadefe9c96
BLAKE2b-256 dba4ef6aaa5fbc29be045520e882fe2803e1d12b41679507c63c5d7416580fb5

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp314-cp314-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp314-cp314-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 bba25d9ed3cccb6a9feeeb2d3c63951a10ea1d1f4e12402ea95090fc306c8afd
MD5 450132e6b74f78b03aeaa1bda9e51e07
BLAKE2b-256 e7f432b808790408a2635439d9e33c68101e7f708a5b99d65ad7f62f3083dc49

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp313-cp313t-win_arm64.whl.

File metadata

  • Download URL: mt2-1.3.1-cp313-cp313t-win_arm64.whl
  • Upload date:
  • Size: 51.0 kB
  • Tags: CPython 3.13t, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.9.0

File hashes

Hashes for mt2-1.3.1-cp313-cp313t-win_arm64.whl
Algorithm Hash digest
SHA256 e6bd0a2e9c46e7d72891186198793ffd2f24bf728ff985c6925bd0d385300132
MD5 fa360026f0169f356036d940bf278560
BLAKE2b-256 6d662938ffae075574eef87b14baa7fec6756134a4c8bc99853ba4b98afa26a0

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: mt2-1.3.1-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 54.5 kB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.9.0

File hashes

Hashes for mt2-1.3.1-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 48d2b268d3061adfb49f82ff70d80ad9d24e59d220e0dc8c77da5957c708f524
MD5 3d946fb44792c5ab2902123cdb94bb4c
BLAKE2b-256 be73f774e345ab8f7c82e06953b4d8da90553201e3e41a638d7dee0921fc47b6

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 42220372f277816757ed7d02623050d5700f59e1c066c783cbd6557e22163345
MD5 522eaa1f775e94e9f1eb08a993d70edc
BLAKE2b-256 7a58c03cc0d86e1d9b90be8cd4af22d04f45d0ec3a64829349c50f3488700004

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp313-cp313t-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp313-cp313t-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 abe05e7abb615c263ba42c12f8c106bc1783a47a137c2d00ae2ae453b63ea81d
MD5 d8c166814b22960d1bfd5d212e4d3760
BLAKE2b-256 ad03c50a7c0290d0ceabe1761b2064e8cff13bf3bd4f8408b335ff46c7bf0032

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c56346a16dcb331d562f51a8eeaa11a34ac0f1920c665c74785b39870c6558ed
MD5 02b8bdaae595224fbd58c9572e656bd9
BLAKE2b-256 9e8c085e3468f50b91b73f91eb90bb7fab5e617d609199ce6ce61d8df7022219

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp313-cp313t-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp313-cp313t-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 f6165e5bcf2e3998573450386d5baf9dda52aa25835b4f87796107ca80dee96e
MD5 761846975189e427a62125a65991ef16
BLAKE2b-256 712456ddd3d96f662ffa0621fd682da8bdbb860924fa76e5df67e2b977488d39

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp313-cp313-win_arm64.whl.

File metadata

  • Download URL: mt2-1.3.1-cp313-cp313-win_arm64.whl
  • Upload date:
  • Size: 50.9 kB
  • Tags: CPython 3.13, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.9.0

File hashes

Hashes for mt2-1.3.1-cp313-cp313-win_arm64.whl
Algorithm Hash digest
SHA256 1e8cb98c4c08fbaeb6000f88db693e27a09aafdecfe7f6c9c960421a71cd2651
MD5 c4d91b70165873b0cc9e67164894d5b4
BLAKE2b-256 45509a337299fe927edf6390a7a49820f3f0ad9ff045f78bf3781f0f34599249

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: mt2-1.3.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 54.2 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: uv/0.9.1

File hashes

Hashes for mt2-1.3.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 636bbe706f030ab74882f7ade20ed800354d401f5c6804f3e8cc72a636857ec7
MD5 80cf679e458c9a452262799391d6f5ac
BLAKE2b-256 576c71b56c35def0d6552e247187c0eea503d673694959c66bc1f2a55bdee1a9

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d6b908bb3e4519bf2b8b59414beb0793afa8208e51a13b4db4c6a91e9011bfd4
MD5 93612c1b6fcd63df0757f881d65f12f9
BLAKE2b-256 1dbd3449e92b7f73fd26c3e788e33b06b81e840b955c130a035713c28c6ea51c

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp313-cp313-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp313-cp313-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7abf3e14653ec8e85a5da6fe9e576b0547653091a72ca7fc0ad2d6bde06f0ad3
MD5 54d54f903f5a4e8529f4419d36d6e616
BLAKE2b-256 598f4709816970578c5cb6d3a6d9916465fecd06fd4621ec5efadbdf6412e669

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e1bd3e5c206140065c8c2f38a045767ee0bf9227b1d198ce438700e1a7620f34
MD5 36fedda8ccba2362738dade7a65a19d5
BLAKE2b-256 6589bc138ccbb751b0b5bcbacf1e6b121da98304c93bc05f75e207718053337d

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp313-cp313-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp313-cp313-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 583cae80b803afc7a4d8d36a54f5281e1879b8b5f7afa21442e35e3d62ff524c
MD5 660e3baeddf79c8eef2bfb093f912460
BLAKE2b-256 d033e62e347b2100bc0c4e1b2df157c816cf8c981e90b0c7b436b817108b3137

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: mt2-1.3.1-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 50.9 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.9.0

File hashes

Hashes for mt2-1.3.1-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 1bcb830777574d11071984f0bd219a399d266441b2d555bd60d3a60665441684
MD5 96b752998ada955c5f1ffecc6e64d442
BLAKE2b-256 5a050ca936845be387d193baec17ef5f05eb7651b7c253e0f2d03bc2eaea105c

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: mt2-1.3.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 54.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: uv/0.9.1

File hashes

Hashes for mt2-1.3.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 90629b38930452b0c186b58b0a2d1667f03aa7375a5d1dff3c54b8f7cfe17bef
MD5 63a85134631dd4c1d11ff66e599f36b7
BLAKE2b-256 9d653bc93695236ed5905b875f1a7c982ea873f783f9508446af8c5e55edd6a1

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 208968cf3c19307bfbbf247630e9debcce0c1e53a6904f22b6ed6ca7cd5a25d8
MD5 85573ec208a387ff2cd6aa7cd4c16eb4
BLAKE2b-256 2db79dca85da27ac473a87188ea8c024c9ca646e083c25ddf4476b78b4a4d435

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp312-cp312-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp312-cp312-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ab013d44551828bda00ed877a3004f09f0633d9ff8ccce930072ca7a9ca4ec66
MD5 14637e54dc1fc0b6d5ee4cc547c59195
BLAKE2b-256 064bd4cecfe58d25c583d04ca3ac1c20488b58f246fa3a574658713102972249

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 47b68cb871646479bcb5619fb203431fe48be16fe0bf91a2fce09451aad31959
MD5 2cc470f6d4b00f713e3b5d8ec3a5d686
BLAKE2b-256 772e672f617fbbc9dc128c7a4dab01763436be4b74b54602a5c16cec32f845e8

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 04466540fcdf9dd465e6157af3c9527faafc8f3aafa9eef19f1e176194dbba81
MD5 d5776f4e2b4587f200147b1f3d05868b
BLAKE2b-256 307b4a2da45999b913e1f56568871e8dbc5ff86f4cf22b521702472a127e10ac

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: mt2-1.3.1-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 50.8 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.9.0

File hashes

Hashes for mt2-1.3.1-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 d7de5b58670f83df3461144b9ddbb41896101f019db53f54ffb3a133a6659fc4
MD5 4f7b1427b2b1f34a8d64b8f4784a0a49
BLAKE2b-256 18fd476ee62664aee7d65bfa726a021c0e4ba7dea36a149b64d13bb8b42a2fdf

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: mt2-1.3.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 54.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: uv/0.9.1

File hashes

Hashes for mt2-1.3.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 61cbfc0bcb655d4b5b73a2816a2691d34d22c79e558af2594404165fe51f7f8b
MD5 f6930fbc2b3db32b2b03ab9ebe8ff9de
BLAKE2b-256 796dfeb31ceef9a5a2fd1a14719ee5ee640c2b0f37a5f84e8b325ab8e425a6be

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 061cb74162807ff1bd13bfa028f338f1e3733da3380e6b97f13cd61870d5d622
MD5 2fec9decfead8854501bcbbc3ab71390
BLAKE2b-256 80ae1f5f1a4aa98d4ad57f746f203aef239f5ce9cdce8805850472102b1e8330

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp311-cp311-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp311-cp311-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7dc063f34798ba5472e27f2dde841b0fb6e7aad9cfc9f6b0b6227ce0b067ce0a
MD5 c78052c22f5c24ca33d2743415fde923
BLAKE2b-256 112db4eedc91b057fa85e6a3c99c26bc5b053e54e9dba298f0af91007f5b969c

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4dce804245a35db892a15f97dfc6cac22f3b381baff3c84e1549bbe72dce1d3c
MD5 33adadc33b2da48b82ae4f149737b1c6
BLAKE2b-256 2731e691e260462f8188c693b0f1d8fe1df70a35466d18c1954495bf447db2bf

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5739c1b2790aa4ef6c77687153b182de0f122a8f23170a955e51d8337989abcb
MD5 4dd04550ce442cb02dea56427d4f9bf7
BLAKE2b-256 63c23494febfe6e9a457312da4df75f5a968e70932ebd1a49d3fe34f55ca318f

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: mt2-1.3.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 54.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: uv/0.9.1

File hashes

Hashes for mt2-1.3.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 47ce98a7f6d4c276765134c408fb5c48067d8b97521ad3a9f28db067cff7603a
MD5 cd7d9b70764a026dfd2b57a6ff776afe
BLAKE2b-256 48ec1bebe9454c939ecc5112520426ef5c7c337d53eb508d75074da46a55fd38

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4393a0d7ebd258a02ffebe186ad88897c67e279b7c9ab98188ddfcc3bd257716
MD5 5bf2c34308a764acd3f7adbed58c02c0
BLAKE2b-256 d70375cc25e9395eba693b3a26fc097c7f9f9b876ce8dbf86e0e66c2c13f3d82

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp310-cp310-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp310-cp310-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 06b4cde0805106c06013cd05c39fe375e8e1e774a2044a77ab3f99516189b671
MD5 83e1ce3328c7e9044e355b1a9fe4772a
BLAKE2b-256 a061c2f88293dd351dbe192ca7d584c5c3fad3fea3370bd04fdb6cf3971d1ab5

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 956ad5b279f186e6d6ffde2baf25d64e03a8d6bea890030f0c03f57e1b910037
MD5 44d3807c3d8b2af3f933af9df7a7bf67
BLAKE2b-256 cb17609ba6b1ac597c0a51511d979638e792bfda3528564b93c3ac49a80b1e62

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 572a973e3a641a971d4acc5b5944c310d0b5dc89af52dfabec5199153149d42d
MD5 b1541c9466fb6498e7650585c0ee6a3a
BLAKE2b-256 bea41db3324c69c4df2d97af0f9b0b085a744f59fef8d146422e96a19688959f

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: mt2-1.3.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 54.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.9.0

File hashes

Hashes for mt2-1.3.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4f985aaee82906098792dfdcbc13b800b0fd6013eadd48a98d59f6264eb8b951
MD5 6b9de1e42bba748e492ad95446c1db44
BLAKE2b-256 54ee1ea34529c30301649a2e34a5b92e0e561444a174db4728fa7c9bd8b97b47

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0d8888c01f366d391d4522e6d8adc074cba539d701a29f5aae302dd2611d57fe
MD5 d82501af4a07bc8fb4eebb3d36e02cef
BLAKE2b-256 0a41e9da8ef283a18a60267c08efe066d457fb2f1191bcf3553ecd02192ec35f

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp39-cp39-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp39-cp39-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 dbc80852df12dd90def713a50f1e621455d2ab0df741fcf7b78db44e56c90d4e
MD5 efe9cdc657a9a415b8ba88d9b4d391d8
BLAKE2b-256 39a472d5f13ea7c20817f37645616e6376758f1ebbf5d6ad0a438b91da9a5e3f

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b11cbbff4818f53b0848e35d222ccb62ddb8240957705311c8d765b4b8240a4e
MD5 18e72fd4907ac99baf6b3c388fdb068c
BLAKE2b-256 d4709d840c1ec8d1a455e39d7c2d72ba63b28869f064470fd0b6a46a65d63743

See more details on using hashes here.

File details

Details for the file mt2-1.3.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for mt2-1.3.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8238f4fb6fe3dc2c3db8db88e26cea8743cd4232c0fcff1bb93a0fad6ca0496b
MD5 a127304f6a1766eb589a899c3e646e88
BLAKE2b-256 f8d31babd6f34cd8ff8de246173135b4c772adccd9ce0ee8e0d0d9cceea6c4f5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page