mtdata is a tool to download datasets for machine translation
Project description
MTData
MTData automates the collection and preparation of machine translation (MT) datasets. It provides CLI and python APIs, which can be used for preparing MT experiments.
This tool knows:
- From where to download data sets: WMT News Translation tests and devs for Paracrawl, Europarl, News Commentary, WikiTitles, Tilde Model corpus, OPUS ...
- How to extract files : .tar, .tar.gz, .tgz, .zip, ...
- How to parse .tmx, .sgm and such XMLs, or .tsv ... Checks if they have same number of segments.
- Whether parallel data is in one .tsv file or two sgm files.
- Whether data is compressed in gz, xz or none at all.
- Whether the source-target is in the same order or is it swapped as target-source order.
- How to map code to ISO language codes! Using ISO 639_3 that has space for 7000+ languages of our planet.
- New in v0.3: BCP-47 like language ID: (language, script, region)
- Download only once and keep the files in local cache.
- (And more of such tiny details over the time.)
MTData is here to:
- Automate machinbe translation training data creation by taking out human intervention. This is inspired by SacreBLEU that takes out human intervention at the evaluation stage.
- A reusable tool instead of dozens of use-once shell scripts spread across multiple repos.
Installation
# Option 1: from pypi
pip install -I mtdata
# To install a specific version, get version number from https://pypi.org/project/mtdata/#history
pip install mtdata==[version]
# Option 2: install from latest master branch
pip install -I git+https://github.com/thammegowda/mtdata
# Option 3: for development/editable mode
git clone https://github.com/thammegowda/mtdata
cd mtdata
pip install --editable .
Current Status:
We have added some commonly used datasets - you are welcome to add more! These are the summary of datasets from various sources (Updated: Feb 2022).
Source | Dataset Count |
---|---|
OPUS | 151,753 |
Flores | 51,714 |
Microsoft | 8,128 |
Leipzig | 5,893 |
Neulab | 4,455 |
Statmt | 1,784 |
1,617 | |
AllenAi | 1,611 |
ELRC | 1,575 |
EU | 1,178 |
Tilde | 519 |
LinguaTools | 253 |
Anuvaad | 196 |
AI4Bharath | 192 |
ParaCrawl | 127 |
Lindat | 56 |
UN | 30 |
JoshuaDec | 29 |
StanfordNLP | 15 |
ParIce | 8 |
LangUk | 5 |
Phontron | 4 |
NRC_CA | 4 |
KECL | 3 |
IITB | 3 |
WAT | 3 |
Masakhane | 2 |
Total | 231,157 |
Usecases
- WMT 2023 General (News) Translation Task: https://www.statmt.org/wmt23/mtdata/
- WMT 2022 General (News) Translation Task: https://www.statmt.org/wmt22/mtdata/
- USC ISI's 500-to-English MT:
http://rtg.isi.edu/many-eng/http://gowda.ai/006-many-to-eng/) - Meta AI's 200-to-200 MT: Whitepaper
CLI Usage
- After pip installation, the CLI can be called using
mtdata
command orpython -m mtdata
- There are two sub commands:
list
for listing the datasets, andget
for getting them
mtdata list
Lists datasets that are known to this tool.
mtdata list -h
usage: __main__.py list [-h] [-l L1-L2] [-n [NAME ...]] [-nn [NAME ...]] [-f] [-o OUT]
optional arguments:
-h, --help show this help message and exit
-l L1-L2, --langs L1-L2
Language pairs; e.g.: deu-eng (default: None)
-n [NAME ...], --names [NAME ...]
Name of dataset set; eg europarl_v9. (default: None)
-nn [NAME ...], --not-names [NAME ...]
Exclude these names (default: None)
-f, --full Show Full Citation (default: False)
# List everything ; add | cut -f1 to see ID column only
mtdata list | cut -f1
# List a lang pair
mtdata list -l deu-eng
# List a dataset by name(s)
mtdata list -n europarl
mtdata list -n europarl news_commentary
# list by both language pair and dataset name
mtdata list -l deu-eng -n europarl news_commentary newstest_deen | cut -f1
Statmt-europarl-9-deu-eng
Statmt-europarl-7-deu-eng
Statmt-news_commentary-14-deu-eng
Statmt-news_commentary-15-deu-eng
Statmt-news_commentary-16-deu-eng
Statmt-newstest_deen-2014-deu-eng
Statmt-newstest_deen-2015-deu-eng
Statmt-newstest_deen-2016-deu-eng
Statmt-newstest_deen-2017-deu-eng
Statmt-newstest_deen-2018-deu-eng
Statmt-newstest_deen-2019-deu-eng
Statmt-newstest_deen-2020-deu-eng
Statmt-europarl-10-deu-eng
OPUS-europarl-8-deu-eng
# get citation of a dataset (if available in index.py)
mtdata list -l deu-eng -n newstest_deen --full
Dataset ID
Dataset IDs are standardized to this format:
<Group>-<name>-<version>-<lang1>-<lang2>
Group
: source or the website where we are obtaining this datasetname
: name of the datasetversion
: version namelang1
andlang2
are BCP47-like codes. In simple case, they are ISO-639-3 codes, however, they might have script and language tags separated by underscores (_
).
mtdata get
This command downloads datasets specified by names for languages to a directory.
You will have to make definite choice for --train
and --test
arguments
mtdata get -h
python -m mtdata get -h
usage: __main__.py get [-h] -l L1-L2 [-tr [ID ...]] [-ts [ID ...]] [-dv ID] [--merge | --no-merge] [--compress] -o OUT_DIR
optional arguments:
-h, --help show this help message and exit
-l L1-L2, --langs L1-L2
Language pairs; e.g.: deu-eng (default: None)
-tr [ID ...], --train [ID ...]
Names of datasets separated by space, to be used for *training*.
e.g. -tr Statmt-news_commentary-16-deu-eng europarl_v9 .
To concatenate all these into a single train file, set --merge flag. (default: None)
-ts [ID ...], --test [ID ...]
Names of datasets separated by space, to be used for *testing*.
e.g. "-ts Statmt-newstest_deen-2019-deu-eng Statmt-newstest_deen-2020-deu-eng ".
You may also use shell expansion if your shell supports it.
e.g. "-ts Statmt-newstest_deen-20{19,20}-deu-eng" (default: None)
-dv ID, --dev ID Dataset to be used for development (aka validation).
e.g. "-dv Statmt-newstest_deen-2017-deu-eng" (default: None)
--merge Merge train into a single file (default: False)
--no-merge Do not Merge train into a single file (default: True)
--compress Keep the files compressed (default: False)
-o OUT_DIR, --out OUT_DIR
Output directory name (default: None)
Quickstart / Example
See what datasets are available for deu-eng
$ mtdata list -l deu-eng | cut -f1 # see available datasets
Statmt-commoncrawl_wmt13-1-deu-eng
Statmt-europarl_wmt13-7-deu-eng
Statmt-news_commentary_wmt18-13-deu-eng
Statmt-europarl-9-deu-eng
Statmt-europarl-7-deu-eng
Statmt-news_commentary-14-deu-eng
Statmt-news_commentary-15-deu-eng
Statmt-news_commentary-16-deu-eng
Statmt-wiki_titles-1-deu-eng
Statmt-wiki_titles-2-deu-eng
Statmt-newstest_deen-2014-deu-eng
....[truncated]
Get these datasets and store under dir data/deu-eng
$ mtdata get -l deu-eng --out data/deu-eng --merge \
--train Statmt-europarl-10-deu-eng Statmt-news_commentary-16-deu-eng \
--dev Statmt-newstest_deen-2017-deu-eng --test Statmt-newstest_deen-20{18,19,20}-deu-eng
# ...[truncated]
INFO:root:Train stats:
{
"total": 2206240,
"parts": {
"Statmt-news_commentary-16-deu-eng": 388482,
"Statmt-europarl-10-deu-eng": 1817758
}
}
INFO:root:Dataset is ready at deu-eng
To reproduce this dataset again in the future or by others, please refer to <out-dir>/mtdata.signature.txt
:
$ cat deu-eng/mtdata.signature.txt
mtdata get -l deu-eng -tr Statmt-europarl-10-deu-eng Statmt-news_commentary-16-deu-eng \
-ts Statmt-newstest_deen-2018-deu-eng Statmt-newstest_deen-2019-deu-eng Statmt-newstest_deen-2020-deu-eng \
-dv Statmt-newstest_deen-2017-deu-eng --merge -o <out-dir>
mtdata version 0.3.0-dev
See what the above command has accomplished:
$ tree data/deu-eng/
├── dev.deu -> tests/Statmt-newstest_deen-2017-deu-eng.deu
├── dev.eng -> tests/Statmt-newstest_deen-2017-deu-eng.eng
├── mtdata.signature.txt
├── test1.deu -> tests/Statmt-newstest_deen-2020-deu-eng.deu
├── test1.eng -> tests/Statmt-newstest_deen-2020-deu-eng.eng
├── test2.deu -> tests/Statmt-newstest_deen-2018-deu-eng.deu
├── test2.eng -> tests/Statmt-newstest_deen-2018-deu-eng.eng
├── test3.deu -> tests/Statmt-newstest_deen-2019-deu-eng.deu
├── test3.eng -> tests/Statmt-newstest_deen-2019-deu-eng.eng
├── tests
│ ├── Statmt-newstest_deen-2017-deu-eng.deu
│ ├── Statmt-newstest_deen-2017-deu-eng.eng
│ ├── Statmt-newstest_deen-2018-deu-eng.deu
│ ├── Statmt-newstest_deen-2018-deu-eng.eng
│ ├── Statmt-newstest_deen-2019-deu-eng.deu
│ ├── Statmt-newstest_deen-2019-deu-eng.eng
│ ├── Statmt-newstest_deen-2020-deu-eng.deu
│ └── Statmt-newstest_deen-2020-deu-eng.eng
├── train-parts
│ ├── Statmt-europarl-10-deu-eng.deu
│ ├── Statmt-europarl-10-deu-eng.eng
│ ├── Statmt-news_commentary-16-deu-eng.deu
│ └── Statmt-news_commentary-16-deu-eng.eng
├── train.deu
├── train.eng
├── train.meta.gz
└── train.stats.json
Recipes
Since v0.3.1
Recipe is a set of datasets nominated for train, dev, and tests, and are meant to improve reproducibility of experiments. Recipes are loaded from
- Default:
mtdata/recipe/recipes.yml
from source code - Cache dir:
$MTDATA/mtdata.recipes.yml
where$MTDATA
has default of~/.mtdata
- Current dir: All files matching the glob:
$PWD/mtdata.recipes*.yml
- If current dir is not preferred,
export MTDATA_RECIPES=/path/to/dir
- Alternatively,
MTDATA_RECIPES=/path/to/dir mtdata list-recipe
- If current dir is not preferred,
See mtdata/recipe/recipes.yml
for the format and examples.
mtdata list-recipe # see all recipes
mtdata get-recipe -ri <recipe_id> -o <out_dir> # get recipe, recreate dataset
Language Name Standardization
ISO 639 3
Internally, all language codes are mapped to ISO-639 3 codes.
The mapping can be inspected with python -m mtdata.iso
or mtdata-iso
$ mtdata-iso -h
usage: python -m mtdata.iso [-h] [-b] [langs [langs ...]]
ISO 639-3 lookup tool
positional arguments:
langs Language code or name that needs to be looked up. When no
language code is given, all languages are listed.
optional arguments:
-h, --help show this help message and exit
-b, --brief be brief; do crash on error inputs
# list all 7000+ languages and their 3 letter codes
$ mtdata-iso # python -m mtdata.iso
...
# lookup codes for some languages
$ mtdata-iso ka kn en de xx english german
Input ISO639_3 Name
ka kat Georgian
kn kan Kannada
en eng English
de deu German
xx -none- -none-
english eng English
german deu German
# Print no header, and crash on error;
$ mtdata-iso xx -b
Exception: Unable to find ISO 639-3 code for 'xx'. Please run
python -m mtdata.iso | grep -i <name>
to know the 3 letter ISO code for the language.
To use Python API
from mtdata.iso import iso3_code
print(iso3_code('en', fail_error=True))
print(iso3_code('eNgLIsH', fail_error=True)) # case doesnt matter
BCP-47
Since v0.3.0
We used ISO 639-3 from the beginning, however, we soon faced the limitation that ISO 639-3 cannot distinguish script and region variants of language. So we have upgraded to BCP-47 like language tags in v0.3.0
.
- BCP47 uses two-letter codes to some and three-letter codes to the rest, we use three-letter codes to all languages.
- BCP47 uses
-
hyphens we use_
underscores, since hyphens are used by MT community to separate bitext pairs (e.g. en-de or eng-deu)
Our tags are of form xxx_Yyyy_ZZ
where
Pattern | Purpose | Standard | Length | Case | Required |
---|---|---|---|---|---|
xxx |
Language | ISO 639-3 | three-letters | lowercase | mandatory |
Yyyy |
Script | ISO 15924 | four-letters | Titlecase | optional |
ZZ |
Region | ISO 3166-1 | two-letters | CAPITALS | optional |
Notes:
- Region is preserved when available and left blank when unavailable
- Script
Yyyy
is forcibly suppressed in obvious cases. E.g.eng
is written usingLatn
script, writingeng-Latn
is just awkward to read asLatn
is default we suppressLatn
script for English. On the other hand a language likeKannada
is written usingKnda
script (kan-Knda
->kan
), but occasionally written usingLatn
script, sokan-Latn
is not suppressed. - The information about what is default script is obtained from IANA language code registry
- Language code
mul
stands for _multiple languages, and is used as a placeholder for multilingual datasets (Seemul-eng
to represent many-to-English dataset recipes in (mtdata/recipe/recipes.yml)
Example:
To inspect parsing/mapping, use python -m mtdata.iso.bcp47 <args>
mtdata-bcp47 eng English en-US en-GB eng-Latn kan Kannada-Deva hin-Deva kan-Latn
INPUT | STD | LANG | SCRIPT | REGION |
---|---|---|---|---|
eng | eng | eng | None | None |
English | eng | eng | None | None |
en-US | eng_US | eng | None | US |
en-GB | eng_GB | eng | None | GB |
eng-Latn | eng | eng | None | None |
kan | kan | kan | None | None |
Kannada-Deva | kan_Deva | kan | Deva | None |
hin-Deva | hin | hin | None | None |
kan-Latn | kan_Latn | kan | Latn | None |
kan-in | kan_IN | kan | None | IN |
kn-knda-in | kan_IN | kan | None | IN |
Pipe Mode
# --pipe/-p : maps stdin -> stdout
# -s express : expresses scripts (unlike BCP47, which supresses default script
$ echo -e "en\neng\nfr\nfra\nara\nkan\ntel\neng_Latn\nhin_deva"| mtdata-bcp47 -p -s express
eng_Latn
eng_Latn
fra_Latn
fra_Latn
ara_Arab
kan_Knda
tel_Telu
eng_Latn
hin_Deva
Python API for BCP47 Mapping
from mtdata.iso.bcp47 import bcp47
tag = bcp47("en_US")
print(*tag) # tag is a tuple
print(f"{tag}") # str(tag) gets standardized string
How to Contribute:
- Please help grow the datasets by adding any missing and new datasets to
index
module. - Please create issues and/or pull requests at https://github.com/thammegowda/mtdata/
Change Cache Directory:
The default cache directory is $HOME/.mtdata
.
It can grow to a large size when you download a lot of datasets using this command.
To change it:
- set the following environment variable
export MTDATA=/path/to/new-cache-dir
- Alternatively, move
$HOME/.mtdata
to the desired place and create a symbolic link
mv $HOME/.mtdata /path/to/new/place
ln -s /path/to/new/place $HOME/.mtdata
Performance Optimization Tips
- Use
mtdata cache -j <jobs> ...
to download many datasets in parallel using specified number of jobs - use
--compress
flagmtdata get|get-recipe
to keep the datasets compressed. - mtdata uses
pigz
by default to handle compressed files (Highly recommend installingpigz
). If you'd like to disable pigz,export USE_PIGZ=0
Run tests
Tests are located in tests/ directory. To run all the tests:
python -m pytest
Developers and Contributor:
See - https://github.com/thammegowda/mtdata/graphs/contributors
Citation
https://aclanthology.org/2021.acl-demo.37/
@inproceedings{gowda-etal-2021-many,
title = "Many-to-{E}nglish Machine Translation Tools, Data, and Pretrained Models",
author = "Gowda, Thamme and
Zhang, Zhao and
Mattmann, Chris and
May, Jonathan",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-demo.37",
doi = "10.18653/v1/2021.acl-demo.37",
pages = "306--316",
}
Disclaimer on Datasets
This tools downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or make any claims regarding license to use these datasets. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.
We request all the users of this tool to cite the original creators of the datsets, which maybe obtained from mtdata list -n <NAME> -l <L1-L2> -full
.
If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.