Skip to main content

Deep learning library to encode multiple brain images and other electronic health record data in disease detection.

Project description

ze logo

Multi-Input Medical Image Machine Learning Toolkit

The Multi-Input Medical Image Machine Learning Toolkit (MultiMedImageML) is a library of Pytorch functions that can encode multiple 3D images (designed specifically for brain images) and offer a single- or multi-label output, such as a disease detection.

Thus, with a dataset of brain images and labels, you can train a model to predict dementia or multiple sclerosis from multiple input brain images.

To install Multi Med Image ML, simply type into a standard UNIX terminal

pip install multi-med-image-ml

Overview

ze figure

The core deep learning architecture is a Pytorch model that can take in variable numbers of 3D images (between one and 14 by default), then encodes them into a numerical vector and, through an adversarial training process, creates an intermediate representation that contains information about disease biomarkers but not confounds, like patient age and scanning site.

ze regress figure

The confound regression process essentially disguises the intermediary representation to have disease biomarker features while imitating the confounding features of other groups.

Getting Started

See the Documentation.

Datasets

This may be used with either public benchmark datasets of brain images or internal hospital records, so long as they're represented as DICOM or NIFTI images. It was largely tested on ADNI and data internal to MGH. If they're represented as DICOM images, they are converted to NIFTI with metadata represented as a JSON file using dcm2niix. They may be further converted to NPY files, which are resized to a specific dimension, with the metadata represented in a pandas dataframe.

The MedImageLoader builds up this representation automatically, but it is space-intensive to do so.

Data may be represented with a folder structure.

.
└── control
    ├── 941_S_7051
    │   ├── Axial_3TE_T2_STAR
    │   │   └── 2022-03-07_11_03_03.0
    │   │       ├── I1553008
    │   │       │   ├── I1553008_Axial_3TE_T2_STAR_20220307110304_5_e3_ph.json
    │   │       │   └── I1553008_Axial_3TE_T2_STAR_20220307110304_5_e3_ph.nii.gz
    │   │       └── I1553014
    │   │           ├── I1553014_Axial_3TE_T2_STAR_20220307110304_5_ph.json
    │   │           └── I1553014_Axial_3TE_T2_STAR_20220307110304_5_ph.nii.gz
    │   ├── HighResHippocampus
    │   │   └── 2022-03-07_11_03_03.0
    │   │       └── I1553013
    │   │           ├── I1553013_HighResHippocampus_20220307110304_11.json
    │   │           └── I1553013_HighResHippocampus_20220307110304_11.nii.gz
    │   └── Sagittal_3D_FLAIR
    │       └── 2022-03-07_11_03_03.0
    │           └── I1553012
    │               ├── I1553012_Sagittal_3D_FLAIR_20220307110304_3.json
    │               └── I1553012_Sagittal_3D_FLAIR_20220307110304_3.nii.gz
    └── 941_S_7087
        ├── Axial_3D_PASL__Eyes_Open_
        │   └── 2022-06-15_14_38_03.0
        │       └── I1591322
        │           ├── I1591322_Axial_3D_PASL_(Eyes_Open)_20220615143803_6.json
        │           └── I1591322_Axial_3D_PASL_(Eyes_Open)_20220615143803_6.nii.gz
        └── Perfusion_Weighted
            └── 2022-06-15_14_38_03.0
                └── I1591323
                    ├── I1591323_Axial_3D_PASL_(Eyes_Open)_20220615143803_7.json
                    └── I1591323_Axial_3D_PASL_(Eyes_Open)_20220615143803_7.nii.gz

In the case of the above folder structure, "/path/to/control" may simply be input into the MedImageLoader function. For multiple labels, "/path/to/test", "/path/to/test2", and so on, may also be input.

Labels and Confounds

MIMIM enables for the representation of labels to classify by and confounds to regress. Confounds are represented as strings and labels can be represented as either strings or the input folder structure to MedImageLoader.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multi_med_image_ml-0.0.24.tar.gz (3.4 MB view details)

Uploaded Source

Built Distribution

multi_med_image_ml-0.0.24-py3-none-any.whl (51.2 kB view details)

Uploaded Python 3

File details

Details for the file multi_med_image_ml-0.0.24.tar.gz.

File metadata

  • Download URL: multi_med_image_ml-0.0.24.tar.gz
  • Upload date:
  • Size: 3.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for multi_med_image_ml-0.0.24.tar.gz
Algorithm Hash digest
SHA256 83c4d846b1143ec162de8afd4e5c9c641532a7543162b4f4097f08ba2b4e0107
MD5 d032281ed53fe7c20fd24308d852fb1e
BLAKE2b-256 13ddb3012d7db3a8679a9095a069455a56a92add654930fe7fafadba855ec4e1

See more details on using hashes here.

File details

Details for the file multi_med_image_ml-0.0.24-py3-none-any.whl.

File metadata

File hashes

Hashes for multi_med_image_ml-0.0.24-py3-none-any.whl
Algorithm Hash digest
SHA256 067c17d17720632531b28fa660060de4fb2c0bb9fa6957a9f2de62643d61c1ef
MD5 0a127f36f4083feb0a05d2a67fa5c466
BLAKE2b-256 7ecb996232313c536fe28cc530dfcf3d56cde234cc52c06e872645b609055685

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page