Skip to main content

Muscle rigged models and environments for machine learning experiments.

Project description

MuscledAgents

OpenAI Gym MuJoCo environments rigged with muscles which can be used with PyMuscle fatigable muscle models.

Prerequisites

  • MuJoCo 1.5
  • mujoco-py
  • gym

Setup

python setup.py develop

Usage

import gym
import muscledagents
import math


def main():

    # Load a muscled ant
    env = gym.make("MuscledAnt-v0")  # Only functional env at the moment
    env.reset()

    print("Observation Space Dims", env.observation_space.shape)
    print("Action Space Dims", env.action_space.shape)

    action_size = env.action_space.shape[0]

    action = [0.0] * action_size
    total_steps = 60 * 10
    for i in range(total_steps):
        action[1] = ((math.sin(i / 25) + 1) / 2)
        action[5] = ((math.sin(i / 35) + 1) / 2)
        action[9] = ((math.sin(i / 45) + 1) / 2)
        action[13] = ((math.sin(i / 55) + 1) / 2)
        env.step(action)
        env.render()


if __name__ == '__main__':
    main()

To explore these environments and models further you will need to understand how input values get translated into final simulated movements.

Control Signals

The action space for an ant is continuous control over 16 muscles. For each of four legs there are four muscles. One leg extensor, one leg flexor, and two hip muscles which move the leg left and right (or forward and back depending on your perspective.)

Gym Environment

The step method takes an array of 16 values which represent the input to the fatigable muscle model for each muscle. Inputs should be in the range [0-1].

PyMuscle Fatigue

After use muscles produce less force for the same level of input. So if you were to send an input signal which recruited all motor units in a muscle constantly for several seconds the output the model will return will rapidly decrease. A period of light or no use is required for the muscle to recover.

MuJoCo Model

Each tendon actuator is control limited to the range [-1.0, 0.0]. When a General actuator is tied to a Tendon in MuJoCo negative values are the equivalent of contractions. Muscles cannot produce force in extension so no positive non-zero values are allowed.

Actuators have a gainprm which scales this input value. This is tuned to a value of 100 to work with the mass of the ant and the resistances of opposing tendons.

Altering the Models

Due to frustration editing XML files the ant model is generated by a python script that uses the mjcf library which I wrote to wrap MuJoCo xml elements in python classes. Note: This may be replaced with the mjcf library from dm_control in the future.

You can view and modify that script in scripts/gen_ant.py.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

muscledagents-0.0.2.tar.gz (9.6 kB view details)

Uploaded Source

Built Distribution

muscledagents-0.0.2-py2.py3-none-any.whl (11.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file muscledagents-0.0.2.tar.gz.

File metadata

  • Download URL: muscledagents-0.0.2.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.29.0 CPython/3.6.5

File hashes

Hashes for muscledagents-0.0.2.tar.gz
Algorithm Hash digest
SHA256 751a2c761e9116851e5e41e18a4ae4874714f7eafc53daa7b0794540bacc7882
MD5 bbf7306a2952b5c2c5cf0f09e4d446b2
BLAKE2b-256 e3e59d86ab638449ed13f6d628c536095702a89a4dab6d9a30214561b75e06db

See more details on using hashes here.

File details

Details for the file muscledagents-0.0.2-py2.py3-none-any.whl.

File metadata

  • Download URL: muscledagents-0.0.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 11.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.29.0 CPython/3.6.5

File hashes

Hashes for muscledagents-0.0.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 fe54b7dbe8cc5b0795e1d204efb09e59e92719ded387bf6db00ce9b2ce9fb880
MD5 1035a446d7a1ebda369e0b1d3afb8113
BLAKE2b-256 20af06ec09e21a5f79ab4d1eedc8eff35bb508723b536472e2a7f2e88db700ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page