Skip to main content

A modeling and simulation tool for cardiac cellular electrophysiology

Project description

Ubuntu unit tests MacOS unit tests Windows unit tests Windows Miniconda test codecov Documentation Status

Myokit

Myokit is a tool for modeling and simulation of cardiac cellular electrophysiology. It's open-source, written in Python, hosted on GitHub and available on PyPi. For the latest documentation, see myokit.readthedocs.io.

More information, including examples and an installation guide, is available on myokit.org. A list of changes introduced in each Myokit release is provided in the Changelog.

Install

For full installation details (on linux, mac, or windows), please see https://myokit.org/install. A shorter installation guide for experienced users is given below.

To install Myokit, using PyQt5 for Myokit's GUI components, run:

pip install myokit[pyqt]

to use PySide2 instead, run:

pip install myokit[pyside]

If you're not planning to use the GUI components (for example to run simulations on a server), you can simply install with

pip install myokit

On Linux and Windows, start menu icons can be added by running

python -m myokit icons

To run single-cell simulations, CVODES must be installed (but Windows users can skip this step, as binaries are included in the pip install). In addition, Myokit needs a working C/C++ compiler to be present on the system.

Existing Myokit installations can be upgraded using

pip install --upgrade myokit

Quick-start guide

After installation, to quickly test if Myokit works, type

python -m myokit run example

or simply

myokit run example

To open an IDE window, type

myokit ide

To see what else Myokit can do, type

myokit -h

Contributing to Myokit

Contributing to Myokit is as easy as asking questions or posting issues and feature requests, and we have pledged to make this an inclusive experience.

We are always looking for people to contribute code too! Guidelines to help you do this are provided in CONTRIBUTING.md, but before diving in please open an issue so that we can first discuss what needs to be done.

A high-level plan for Myokit's future is provided in the roadmap.

Meet the team!

Myokit's development is driven by a team at the Universities of Nottingham, Oxford, and Macao, led by Michael Clerx (Nottingham). It is guided by an external advisory group composed of Jordi Heijman (Maastricht University), Trine Krogh-Madsen (Weill Cornell Medicine), and David Gavaghan (Oxford).

Citing Myokit

If you use Myokit in your research, please cite it using the information in our CITATION file.

We like to keep track of who's using Myokit for research (based on publications) and teaching (based on peronsal correspondence). If you've used Myokit in teaching, we're always happy to hear about it so please get in touch via the discussion board!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

myokit-1.37.4.tar.gz (2.1 MB view details)

Uploaded Source

Built Distribution

myokit-1.37.4-py3-none-any.whl (2.3 MB view details)

Uploaded Python 3

File details

Details for the file myokit-1.37.4.tar.gz.

File metadata

  • Download URL: myokit-1.37.4.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for myokit-1.37.4.tar.gz
Algorithm Hash digest
SHA256 3dcd366f9187ebcbcc13d1db7e3455ffc32d1e454aae1b7eda358bfdecf81fc2
MD5 917aa71aebc076673e360872b36d076e
BLAKE2b-256 ca43e7bcd8678984e9c84c1e1ad4fc28310fb98338156a72440786d38e4a2ec5

See more details on using hashes here.

File details

Details for the file myokit-1.37.4-py3-none-any.whl.

File metadata

  • Download URL: myokit-1.37.4-py3-none-any.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for myokit-1.37.4-py3-none-any.whl
Algorithm Hash digest
SHA256 8341a3c6f98757f65707647b3474ea09cf75fbdab903866a2452a36305e94076
MD5 5ca0f44aec284d85aebfc77d92a0dede
BLAKE2b-256 b6d658a15d85867df3cebe9f531e49bb551e43e1a962366b67050731180df189

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page