Skip to main content

Random-forest automated bud annotation

Project description

napari-buds

License BSD-3 PyPI Python Version tests codecov napari hub

Random-forest automated bud annotation


This napari plugin was generated with Cookiecutter using @napari's cookiecutter-napari-plugin template.

Installation

make sure you already have installed napari.

Next, You can install napari-buds via pip:

pip install napari-buds

To install latest development version :

pip install git+https://github.com/SanderSMFISH/napari-buds.git

Contributing

Contributions are very welcome. Tests can be run with tox, please ensure the coverage at least stays the same before you submit a pull request.

Documentation

Napari-Buds is a random forest based mother-bud annotation plugin for Napari devevoped by the TutucciLab (https://www.tutuccilab.com/) of the systems biology group at the Vrije Universiteit van Amsterdam. Mother-bud annotation requires single or multichannel 2D images of budding yeast and a fluorescent marker that localizes to the bud. In the example dataset provided smFISH DNA-probes were used as localized bud marker.The GUI layout for random forest based classification was inspired by ImageJ 'plugin Weka Segmentation' [1].

Please follow the workflow described underneath to perform mother-bud annotation:

  1. Open images in napari and create empty label layer. Before starting the plugin it is required that a empty label layer is created. For multichannel images each channel should be provided seperately to napari. An example (jupyter) notebook (Open Test Images Napari.ipynb) for loading test data in napari is provided in the notebooks folder. Example dataset can be downloaded from https://zenodo.org/record/7004556#.YwM1_HZBztU.

  2. If multichannel images are unaligned the translate widget under Plugins>napari-buds>Translate can be used. Select which layer should be translated to align to the layers in widget menu. Then use the aswd keys to translate (move) the selected layer. To register changes and update coordinates of the translated image in napari press t.

Random forest classification

  1. To open the mother-bud annotation plugin go to Plugins>napari-buds>bud annotation. Before starting the plugin it is required that a empty label layer is created.

  2. To train a random forest classifier, in the created label layer draw examples of cells, buds and background (see tutorial gif below). In the Define Label segment of the widget you define which label value (class #label_value) corresponds to cells, buds and background. Currently, cells and backgrounds and buds have to be defined in the Define Label segment if you want to be able to segment the classification aswell. In the segment Layers to extract Features from we can select which layers will be used in training the random forest classifier. Next press Train classifier. After training is completed a result layer is added to layer list. Inspect the results carefully to asses classifier performance. The trained classifier can be saved using the save classifier button. Previously trained classifier can be loaded by pressing Load classifier. Loaded classifer can applied to new images by pressing Classify, resulting again in a results layer. It is possible to change the random forest parameters with the Set random forest parameters button and changing the values in the pop up menu. Press Run to register changed settings. For an example of the parameters used see: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html and https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_trainable_segmentation.html.

  3. Next, we want to perfom watershed segmentation using the result layer. However, for watershed segmentation seeds (also called markers) are required (for an explanation of watershed segmenation see: https://en.wikipedia.org/wiki/Watershed_(image_processing)). To define the seeds we can either simply threshold on one of the supplied image layers or we can use distance tranform (https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_watershed.html#sphx-glr-auto examples-segmentation-plot-watershed-py).The resulting seeds layer can be adjusted manually by editing in napari. A good seeds layers correspond to each cell having a single seed (buds are not single cells). To perform watershed segmentation press the Segment button.

  4. Carefully inspect the resulting cell mask and bud layer. Correct the mistakes in both layers. Bud label values should correspond to the label value of the cell mask of mother cell. To verify mother bud relations were drawn correctly press Draw Mother-Bud relations. If Mother-Bud relations are correct, you can save both label layers. Mother and buds simply share the same label number. Thus, either the mother or bud layer can be manually corrected for mistakes. Corrections can be checked by clicking Draw Mother-Bud relations again. mother and buds layer can be saved manually in napari. When using Jupyter notebook mother and bud layers can be saved as shown in Open Test Images Napari.ipynb.

  5. An example notebook for dataextraction of the created cell and bud masks can be found in the example notebooks folder (Extract_Mother_Buds_relations_from_Masks_and_intergrate_FQ_spot_data.ipynb).This notebooks relates RNA spots (smFISH data found on zenodo) to the mother or bud compartment.

See video for clarification:

Watch the video

Similar Napari plugins

1-napari-accelerated-pixel-and-object-classification (APOC) by Robert Haasse.

2-napari-feature-classifier.

License

Distributed under the terms of the BSD-3 license, "napari-buds" is free and open source software

Issues

If you encounter any problems, please file an issue along with a detailed description.

Known Issues

If window geometry of the window is unable to be set, this might lead to issues in the display of the widget. For example, part of the widget might fall of the screen. In these cases, it might help to adjust in your display setting the display scaling to a lower setting.

References

  1. Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W., Schindelin, J., Cardona, A., & Sebastian Seung, H. (2017). Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics, 33(15), 2424–2426. doi:10.1093/bioinformatics/btx180

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

napari-buds-0.0.5.tar.gz (19.9 kB view details)

Uploaded Source

Built Distribution

napari_buds-0.0.5-py3-none-any.whl (21.5 kB view details)

Uploaded Python 3

File details

Details for the file napari-buds-0.0.5.tar.gz.

File metadata

  • Download URL: napari-buds-0.0.5.tar.gz
  • Upload date:
  • Size: 19.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for napari-buds-0.0.5.tar.gz
Algorithm Hash digest
SHA256 ee6ba3fe8d44a4f00d699c777e92e9ff355a79c07edabc409bfa628e8df968d3
MD5 df18c0cf4c0de15cd7432246ec71f1f5
BLAKE2b-256 19033ea178ac9ad7d88f0ec8a52c85c545f3d11c417c1c4c5095778854c54a59

See more details on using hashes here.

File details

Details for the file napari_buds-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: napari_buds-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 21.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for napari_buds-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 60fea19d9561249674ad5fa925f174d30012659e3cdc7dc4a62d08a482d14c59
MD5 1f452dcc3cf366177808e158398a2782
BLAKE2b-256 fd9e4110947868591050fec820c66d7fa2367cb6cdc470746b1556178191abf7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page