Abstract NetCDF data objects, providing fast data transfer between analysis packages.
Project description
ncdata
Generic NetCDF data in Python.
Represents raw netCDF data in Python, with no structural assumptions or interpretations, and provides facilities to inspect and manipulate it with complete freedom.
Also
Provides fast data exchange between analysis packages, and full control of storage formatting.
Especially : Ncdata exchanges data between Xarray and Iris as efficiently as possible
"lossless, copy-free and lazy-preserving".
This enables the user to freely mix+match operations from both projects, getting the "best of both worlds".
import xarray
import ncdata.iris_xarray as nci
import iris.quickplot as qpltds = xarray.open_dataset(filepath)
ds_resample = ds.rolling(time=3).mean()
cubes = nci.cubes_from_xarray(ds_resample)
temp_cube = cubes.extract_cube("air_temperature")
qplt.contourf(temp_cube[0])
Purposes
- represent netcdf data as structures of Python objects
- easy manipulation of netcdf data with pythonic syntax
- Fast and efficient translation of data between Xarray and Iris objects.
- This allows the user to mix+match features from either package in code.
See : https://ncdata.readthedocs.io/en/latest/userdocs/user_guide/design_principles.html
Documentation
On ReadTheDocs. Please see:
Demonstration code examples:
- Apply Iris regrid to xarray data
- Use Zarr data in Iris
- Correct a mis-coded attribute in Iris input
- Rename a dimension in xarray output
- Copy selected data to a new file
Apply Iris regrid to xarray data
from ncdata.iris_xarray import cubes_to_xarray, cubes_from_xarray
dataset = xarray.open_dataset("file1.nc", chunks="auto")
(cube,) = cubes_from_xarray(dataset)
cube2 = cube.regrid(grid_cube, iris.analysis.PointInCell)
dataset2 = cubes_to_xarray(cube2)
Use Zarr data in Iris
from ncdata.threadlock_sharing import enable_lockshare
enable_lockshare(iris=True, xarray=True)
import xarray as xr
dataset = xr.open_dataset(input_zarr_path, engine="zarr", chunks="auto")
input_cubes = cubes_from_xarray(dataset)
output_cubes = my_process(input_cubes)
dataset2 = cubes_to_xarray(output_cubes)
dataset2.to_zarr(output_zarr_path)
Correct a miscoded attribute in Iris input
from ncdata.iris import to_iris
enable_lockshare(iris=True)
ncdata = from_nc4(input_path)
for var in ncdata.variables.values():
if "coords" in var.attributes:
var.attributes.rename("coords", "coordinates")
cubes = to_iris(ncdata)
Rename a dimension in xarray output
enable_lockshare(xarray=True)
dataset = xr.open_dataset("file1.nc")
xr_ncdata = from_xarray(dataset)
from ncdata.utils import rename_dimension
rename_dimension(xr_ncdata, "dim0", "newdim")
to_nc4(ncdata, "file_2a.nc")
Copy selected data to a new file
from ncdata.netcdf4 import from_nc4, to_nc4
ncdata = from_nc4("file1.nc")
# Make a list of partial names to select the wanted variables
keys = ["air_", "surface"]
# Explicitly add dimension names, to include all the dimension variables
keys += list(ncdata.dimensions)
# Identify the wanted variables
select_vars = [
var
for var in ncdata.variables.values()
if any(var.name.startswith(key) for key in keys)
]
# Add any referenced coordinate variables
for var in select_vars:
coordnames = var.avals.get("coordinates")
if coordnames:
for coordname in coordnames.split(" "):
select_vars.append(ncdata.variables[coordname])
# Replace variables with only the wanted ones
ncdata.variables.clear()
ncdata.variables.addall(select_vars)
# Save
to_nc4(ncdata, "pruned.nc")
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file ncdata-0.3.2.tar.gz.
File metadata
- Download URL: ncdata-0.3.2.tar.gz
- Upload date:
- Size: 604.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.2.0 CPython/3.12.11
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
26f07e7e057ad2ed15bc3e7b757baabcfb7189be587d4a30103b559e734c25af
|
|
| MD5 |
20d0976fcd71a6deb61eff65ccbdcea9
|
|
| BLAKE2b-256 |
23296599db53efb3acd172c9e4154b68d91c8a7634e29fb1962403824f159d6a
|
File details
Details for the file ncdata-0.3.2-py3-none-any.whl.
File metadata
- Download URL: ncdata-0.3.2-py3-none-any.whl
- Upload date:
- Size: 43.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.2.0 CPython/3.12.11
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
72a95bcdf3d021e684aa62069dabc14377f1feb546dee964b4626607371996d6
|
|
| MD5 |
e23ea83465cfd3d212aa88347ddd875d
|
|
| BLAKE2b-256 |
8f0404d035755a8a9de0ab12e7b0597c2258c6b1673d6255239b11a3afcf3812
|